Advertisement

Tumor Biology

, Volume 33, Issue 5, pp 1467–1476 | Cite as

Cyclin D1 G870A polymorphism and lung cancer risk: a meta-analysis

  • Jianming Liu
  • Qiande Liao
  • Yangde Zhang
  • Shenghua Sun
  • Caigao Zhong
  • Xinmin Liu
Research Article

Abstract

Many studies have investigated the association between Cyclin D1 (CCND1) G870A polymorphism and lung cancer risk, but the impact of CCND G870A polymorphism on lung cancer is unclear owing to the obvious inconsistence among those studies. This study aimed to quantify the strength of association between CCND1 G870A polymorphism and lung cancer risk. We searched the PubMed, Embase, and Wangfang databases for articles on studies relating the CCND1 G870A polymorphism to the risk of lung cancer in humans. We estimated summary odds ratios (ORs) with their confidence intervals (CIs) to assess the association. Meta-analyses of total studies showed that CCND1 G870A polymorphism was associated with lung cancer risk under three genetic models (ORA versus G = 1.13, 95 % CI 1.03–1.24; ORAA versus GG = 1.20, 95 % CI 1.07–1.35; ORAA versus AG + GG = 1.23, 95 % CI 1.02–1.50). Meta-analyses of studies with high quality showed that CCND1 G870A polymorphism was associated with lung cancer risk under two genetic models (ORA versus G = 1.08, 95 % CI 1.02–1.15; ORAA versus GG = 1.17, 95 % CI 1.04–1.32). Subgroup analyses by ethnicity and sensitivity analyses further identified the significant association above. No evidence of publication bias was observed. Meta-analyses of available data show a significant association between the CCND1 G870A polymorphism and lung cancer risk, and CCND1 G870A polymorphic variant A contributes to increased risk of lung cancer.

Keywords

Cyclin D1 Lung cancer Gene polymorphism Meta-analysis 

Notes

Acknowledgments

We thank Fei Zhang, Xiangya Hospital of Changsha, for her statistical support.

Funding

No external funding was either sought or obtained for this study.

Conflicts of interest

None

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med. 2004;350:379–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol. 2011;12:399–408.CrossRefPubMedGoogle Scholar
  5. 5.
    Steliga MA, Dresler CM. Epidemiology of lung cancer: smoking, secondhand smoke, and genetics. Surg Oncol Clin N Am. 2011;20:605–18.CrossRefPubMedGoogle Scholar
  6. 6.
    Yokota J, Shiraishi K, Kohno T. Genetic basis for susceptibility to lung cancer: recent progress and future directions. Adv Cancer Res. 2010;109:51–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Herber B, Truss M, Beato M, Muller R. Inducible regulatory elements in the human cyclin d1 promoter. Oncogene. 1994;9:1295–304.PubMedGoogle Scholar
  9. 9.
    Sherr CJ. Mammalian g1 cyclins. Cell. 1993;73:1059–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer. 2001;1:222–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin d1: polymorphism, aberrant splicing and cancer risk. Oncogene. 2006;25:1620–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Lu F, Gladden AB, Diehl JA. An alternatively spliced cyclin d1 isoform, cyclin d1b, is a nuclear oncogene. Cancer Res. 2003;63:7056–61.PubMedGoogle Scholar
  13. 13.
    Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, Senderowicz AM, Conti CJ, Knudsen ES. Cyclin d1 splice variants. Differential effects on localization, rb phosphorylation, and cellular transformation. J Biol Chem. 2003;278:30339–47.CrossRefPubMedGoogle Scholar
  14. 14.
    Gautschi O, Hugli B, Ziegler A, Bigosch C, Bowers NL, Ratschiller D, Jermann M, Stahel RA, Heighway J, Betticher DC. Cyclin d1 (ccnd1) a870g gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (nsclc) patients. Lung Cancer. 2006;51:303–11.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang W, Spitz MR, Yang H, Lu C, Stewart DJ, Wu X. Genetic variants in cell cycle control pathway confer susceptibility to lung cancer. Clin Cancer Res. 2007;13:5974–81.CrossRefPubMedGoogle Scholar
  16. 16.
    Qiuling S, Yuxin Z, Suhua Z, Cheng X, Shuguang L, Fengsheng H. Cyclin d1 gene polymorphism and susceptibility to lung cancer in a Chinese population. Carcinogenesis. 2003;24:1499–503.CrossRefPubMedGoogle Scholar
  17. 17.
    Hung RJ, Boffetta P, Canzian F, Moullan N, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V, Bencko V, Chabrier A, Landi S, Gemignani F, Hall J, Brennan P. Sequence variants in cell cycle control pathway, X-ray exposure, and lung cancer risk: a multicenter case–control study in Central Europe. Cancer Res. 2006;66:8280–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Sobti RC, Kaur P, Kaur S, Singh J, Janmeja AK, Jindal SK, Kishan J, Raimondi S. Effects of cyclin d1 (ccnd1) polymorphism on susceptibility to lung cancer in a north Indian population. Cancer Genet Cytogenet. 2006;170:108–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Hsia TC, Liu CJ, Lin CH, Chang WS, Chu CC, Hang LW, Lee HZ, Lo WC, Bau DT. Interaction of ccnd1 genotype and smoking habit in Taiwan lung cancer patients. Anticancer Res. 2011;31:3601–5.PubMedGoogle Scholar
  20. 20.
    Attia J, Thakkinstian A, D’Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol. 2003;56:297–303.CrossRefPubMedGoogle Scholar
  21. 21.
    Petitti DB. Meta-analysis, decision analysis, and cost effectiveness analysis: methods for quantitative synthesis in medicine (2nd ed). New York: Oxford University Press; 2000.Google Scholar
  22. 22.
    Sotiriadis A, Makrigiannakis A, Stefos T, Paraskevaidis E, Kalantaridou SN. Fibrinolytic defects and recurrent miscarriage: a systematic review and meta-analysis. Obstet Gynecol. 2007;109:1146–55.CrossRefPubMedGoogle Scholar
  23. 23.
    Su MT, Lin SH, Chen YC. Genetic association studies of angiogenesis- and vasoconstriction-related genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Hum Reprod Updat. 2011;17:803–12.CrossRefGoogle Scholar
  24. 24.
    Salanti G, Amountza G, Ntzani EE, Ioannidis JP. Hardy–Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet. 2005;13:840–8.CrossRefGoogle Scholar
  25. 25.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMedGoogle Scholar
  26. 26.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMedGoogle Scholar
  27. 27.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRefGoogle Scholar
  29. 29.
    Thompson SG, Higgins J. How should meta–regression analyses be undertaken and interpreted? Stat Med. 2002;21:1559–73.CrossRefPubMedGoogle Scholar
  30. 30.
    A Tobias Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull. 1999;8:15–17.Google Scholar
  31. 31.
    Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, Mountain JL, Perez-Stable EJ, Sheppard D, Risch N. The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med. 2003;348:1170–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Bhopal R. Glossary of terms relating to ethnicity and race: for reflection and debate. J Epidemiol Community Health. 2004;58:441–5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316:469.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang R, Zhang JH, Li Y, Wen D, Wei L. The association of cyclin d1(a870g)polymorphism with susceptibility to lung cancer in northern Chinese population. Tumor. 2003;23:364–6. Article in Chinese.Google Scholar
  36. 36.
    Li QP, Deng YJ, Xiao CJ, Yang HS. Comparative study of polymorphism of cyclin dl gene in patients with non small cell lung cancer from Xuanwei and Kunming. Shandong Yi Yao. 2009;49:1–3. Article in Chinese.Google Scholar
  37. 37.
    Buch S, Zhu B, Davis AG, Odom D, Siegfried JM, Grandis JR, Romkes M. Association of polymorphisms in the cyclin d1 and xpd genes and susceptibility to cancers of the upper aero-digestive tract. Mol Carcinog. 2005;42:222–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang Q, Jiang YX, Li GF, Liu X, Wang WW, Deng J, Chen N. The relationship between the cyclin d1(ccndi)a870g gene polymorphism and non small cell lung cancer in Yunnan. Med Philos. 2008;29:36–8. Article in Chinese.Google Scholar
  39. 39.
    Ma H, Chen J, Pan S, Dai J, Jin G, Hu Z, Shen H, Shu Y. Potentially functional polymorphisms in cell cycle genes and the survival of non-small cell lung cancer in a Chinese population. Lung Cancer. 2011;73:32–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Pabalan N, Bapat B, Sung L, Jarjanazi H, Francisco-Pabalan O, Ozcelik H. Cyclin d1 pro241pro (ccnd1-g870a) polymorphism is associated with increased cancer risk in human populations: a meta-analysis. Cancer Epidemiol Biomark Prev. 2008;17:2773–81.CrossRefGoogle Scholar
  41. 41.
    Betticher DC, Heighway J, Thatcher N, Hasleton PS. Abnormal expression of ccnd1 and rb1 in resection margin epithelia of lung cancer patients. Br J Cancer. 1997;75:1761–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim ES, Lee JJ, Wistuba II. Cotargeting cyclin d1 starts a new chapter in lung cancer prevention and therapy. Cancer Prev Res (Phila). 2011;4:779–82.CrossRefGoogle Scholar
  43. 43.
    Gautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J. Cyclin d1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer. 2007;55:1–14.CrossRefPubMedGoogle Scholar
  44. 44.
    Olding LB, Thurin J, Svalander C, Koprowski H. Expression of gastrointestinal carcinoma-associated antigen (gica) detected in human fetal tissues by monoclonal antibody ns-19-9. Int J Cancer J Int Du Cancer. 1984;34:187–92.CrossRefGoogle Scholar
  45. 45.
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin d as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.CrossRefPubMedGoogle Scholar
  46. 46.
    Peters J, Mengersen K. Selective reporting of adjusted estimates in observational epidemiology studies: reasons and implications for meta-analyses. Eval Health Prof. 2008;31:370–89.CrossRefPubMedGoogle Scholar
  47. 47.
    Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005;2:209–17.CrossRefPubMedGoogle Scholar
  48. 48.
    Li Y, Qiu LX, Shen XK, Lv XJ, Qian XP, Song Y. A meta-analysis of tp53 codon 72 polymorphism and lung cancer risk: evidence from 15,857 subjects. Lung Cancer. 2009;66:15–21.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Jianming Liu
    • 1
    • 2
  • Qiande Liao
    • 2
  • Yangde Zhang
    • 2
  • Shenghua Sun
    • 1
  • Caigao Zhong
    • 3
  • Xinmin Liu
    • 3
  1. 1.Department of Respiratory diseasesthe Third Xiangya Hospital of Central South UniversityChangshaChina
  2. 2.National Hepatobiliary and Enteric Surgery Research Center of Ministry of HealthChangshaPeople’s Republic of China
  3. 3.Department of Health ToxicologySchool of Public Health of Central South UniversityChangshaChina

Personalised recommendations