Skip to main content

Advertisement

Log in

Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation

  • Research Article
  • Published:
Tumor Biology

Abstract

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. While effective therapy exists for the primary tumor, there is a lack of effective treatment for metastatic disease currently. Natural withanolide withaferin A (WA) has shown efficacy in cancers demonstrating upregulation of pro-survival pathways. The purpose of the present study is to investigate the effect of WA as a potential therapeutic agent for UM in vitro as well as in vivo. UM cells were treated with WA and several cell-based assays, such as MTS, trypan blue exclusion assay, clonogenic, wound healing, cell cycle shift, annexin V/propidium iodide, and Western blot, were performed. In vivo experiments utilized the 92.1 cells in a xenograft murine model. WA inhibits cell proliferation of uveal melanoma cells with an IC50 of 0.90, 1.66, and 2.42 μM for OMM2.3, 92.1, and MEL290 cells, respectively. Flow cytometry analysis demonstrates G2/M cell cycle arrest and apoptosis at 1 μM WA in treated cells. WA induced apoptosis partly through the suppression of c-Met, Akt, and Raf-1 signaling activation. In vivo studies using WA reduced tumor growth in 100% of animals (p = 0.015). Our observation indicates that WA is a potent drug that inhibits cell proliferation, shifts cell cycle arrest, and induces apoptosis in multiple UM cell lines in vitro. WA-mediated apoptosis in UM cells is partly mediated though the suppression of c-Met and Akt activation. WA significantly decreases UM tumor growth in vivo and justifies further evaluation of this drug for the treatment of metastatic uveal melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singh AD, Borden EC. Metastatic uveal melanoma. Ophthalmol Clin North Am. 2005;18:143–50.

    Article  Google Scholar 

  2. Singh AD, Damato B, Howard P, Harbour JW. Uveal melanoma: genetic aspects. Ophthalmol Clin North Am. 2005;18:85–97.

    Article  Google Scholar 

  3. Ven Murthy MR, Ranjekar PK, Ramassamy C, Deshpande M. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: Ashwagandha. Cent Nerv Syst Agents Med Chem. 2010;10:238–46.

    Article  CAS  Google Scholar 

  4. Mishra LC, Singh BB, Dagenais S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev. 2000;5:334–46.

    CAS  PubMed  Google Scholar 

  5. Choi MJ, Park EJ, Min KJ, Park JW, Kwon TK. Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicol In Vitro. 2011;25:692–8.

    Article  CAS  Google Scholar 

  6. Lee J, Hahm ER, Singh SV. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis. 2010;31:1991–8.

    Article  CAS  Google Scholar 

  7. Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C. Notch-1 inhibition by withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther. 2010;9:202–10.

    Article  CAS  Google Scholar 

  8. Samadi AK, Mukerji R, Shah A, Timmermann BN, Cohen MS. A novel ret inhibitor with potent efficacy against medullary thyroid cancer in vivo. Surgery. 2010;148:1228–36. discussion 1236.

    Article  Google Scholar 

  9. Samadi AK, Tong X, Mukerji R, Zhang H, Timmermann BN, Cohen MS. Withaferin A, a cytotoxic steroid from Vassobia breviflora, induces apoptosis in human head and neck squamous cell carcinoma. J Nat Prod. 2010;73:1476–81.

    Article  CAS  Google Scholar 

  10. Samadi A, Loo P, Mukerji R, O’Donnell G, Tong X, Timmermann BN, Cohen MS. A novel hsp90 modulator with selective activity against thyroid cancers in vitro. Surgery. 2009;146:1196–207.

    Article  Google Scholar 

  11. Cruz 3rd F, Rubin BP, Wilson D, Town A, Schroeder A, Haley A, Bainbridge T, Heinrich MC, Corless CL. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 2003;63:5761–6.

    CAS  PubMed  Google Scholar 

  12. Kilic E, Bruggenwirth HT, Verbiest MM, Zwarthoff EC, Mooy NM, Luyten GP, de Klein A. The RAS-BRAF kinase pathway is not involved in uveal melanoma. Melanoma Res. 2004;14:203–5.

    Article  Google Scholar 

  13. van den Bosch T, Kilic E, Paridaens D, de Klein A. Genetics of uveal melanoma and cutaneous melanoma: two of a kind? Dermatol Res Pract. 2010;2010:1–13.

    Article  Google Scholar 

  14. Calipel A, Mouriaux F, Glotin AL, Malecaze F, Faussat AM, Mascarelli F. Extracellular signal-regulated kinase-dependent proliferation is mediated through the protein kinase A/B-Raf pathway in human uveal melanoma cells. J Biol Chem. 2006;281:9238–50.

    Article  CAS  Google Scholar 

  15. Dhomen N, Marais R. New insight into BRAF mutations in cancer. Curr Opin Genet Dev. 2007;17:31–9.

    Article  CAS  Google Scholar 

  16. Lefevre G, Babchia N, Calipel A, Mouriaux F, Faussat AM, Mrzyk S, Mascarelli F. Activation of the FGF2/FGFR1 autocrine loop for cell proliferation and survival in uveal melanoma cells. Invest Ophthalmol Vis Sci. 2009;50:1047–57.

    Article  Google Scholar 

  17. Palmieri G, Capone M, Ascierto ML, Gentilcore G, Stroncek DF, Casula M, Sini MC, Palla M, Mozzillo N, Ascierto PA. Main roads to melanoma. J Transl Med. 2009;7:86.

    Article  Google Scholar 

  18. Onken MD, Worley LA, Long MD, Duan S, Council ML, Bowcock AM, Harbour JW. Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest Ophthalmol Vis Sci. 2008;49:5230–4.

    Article  Google Scholar 

  19. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, Simpson EM, Barsh GS, Bastian BC. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    Article  Google Scholar 

  20. Babchia N, Calipel A, Mouriaux F, Faussat AM, Mascarelli F. The PI3k/Akt and mTOR/P70S6K signaling pathways in human uveal melanoma cells: interaction with B-raf/ERK. Invest Ophthalmol Vis Sci. 2010;51:421–9.

    Article  Google Scholar 

  21. Mallikarjuna K, Pushparaj V, Biswas J, Krishnakumar S. Expression of epidermal growth factor receptor, ezrin, hepatocyte growth factor, and c-Met in uveal melanoma: an immunohistochemical study. Curr Eye Res. 2007;32:281–90.

    Article  CAS  Google Scholar 

  22. Hendrix MJ, Seftor EA, Seftor RE, Kirschmann DA, Gardner LM, Boldt HC, Meyer M, Pe’er J, Folberg R. Regulation of uveal melanoma interconverted phenotype by hepatocyte growth factor/scatter factor (HGF/SF). Am J Pathol. 1998;152:855–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Economou MA, All-Ericsson C, Bykov V, Girnita L, Bartolazzi A, Larsson O, Seregard S. Receptors for the liver synthesized growth factors IGF-1 and HGF/SF in uveal melanoma: intercorrelation and prognostic implications. Invest Ophthalmol Vis Sci. 2005;46:4372–5.

    Article  Google Scholar 

  24. Economou MA, All-Ericsson C, Bykov V, Girnita L, Bartolazzi A, Larsson O, Seregard S. Receptors for the liver synthesized growth factors IGF-1 and HGF/SF in uveal melanoma: intercorrelation and prognostic implications. Acta Ophthalmol. 2008;86:20–5.

    Article  Google Scholar 

  25. Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12:3657–60.

    Article  CAS  Google Scholar 

  26. Ye M, Hu D, Tu L, Zhou X, Lu F, Wen B, Wu W, Lin Y, Zhou Z, Qu J. Involvement of PI3k/Akt signaling pathway in hepatocyte growth factor-induced migration of uveal melanoma cells. Invest Ophthalmol Vis Sci. 2008;49:497–504.

    Article  Google Scholar 

  27. Abdel-Rahman MH, Yang Y, Zhou XP, Craig EL, Davidorf FH, Eng C. High frequency of submicroscopic hemizygous deletion is a major mechanism of loss of expression of PTEN in uveal melanoma. J Clin Oncol. 2006;24:288–95.

    Article  CAS  Google Scholar 

  28. Saraiva VS, Caissie AL, Segal L, Edelstein C, Burnier Jr MN. Immunohistochemical expression of phospho-Akt in uveal melanoma. Melanoma Res. 2005;15:245–50.

    Article  CAS  Google Scholar 

  29. Mitsiades N, Chew SA, He B, Riechardt AI, Karadedou T, Kotoula V, Poulaki V. Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Invest Ophthalmol Vis Sci. 2011;52:7248–55.

    Article  CAS  Google Scholar 

  30. Casagrande F, Bacqueville D, Pillaire MJ, Malecaze F, Manenti S, Breton-Douillon M, Darbon JM. G1 phase arrest by the phosphatidylinositol 3-kinase inhibitor LY 294002 is correlated to up-regulation of p27Kip1 and inhibition of G1 CDKs in choroidal melanoma cells. FEBS Lett. 1998;422:385–90.

    Article  CAS  Google Scholar 

  31. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, Council ML, Matatall KA, Helms C, Bowcock AM. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  CAS  Google Scholar 

  32. Abdel-Rahman MH, Boru G, Massengill J, Salem MM, Davidorf FH. MET oncogene inhibition as a potential target of therapy for uveal melanomas. Invest Ophthalmol Vis Sci. 2010;51:3333–9.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Kansas Lion’s Sight Foundation.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas K. Samadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadi, A.K., Cohen, S.M., Mukerji, R. et al. Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumor Biol. 33, 1179–1189 (2012). https://doi.org/10.1007/s13277-012-0363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0363-x

Keywords

Navigation