Skip to main content

Advertisement

Log in

Impact of expression system on the function of the C6.5 diabody PET radiotracer

  • Research Article
  • Published:
Tumor Biology

Abstract

The ability of engineered antibodies to rapidly and selectively target tumors that express their target antigen makes them well suited for use as radioimaging tracers. The combination of molecular size and bivalent nature makes diabody molecules a particularly promising structure for use as radiotracers for diagnostic imaging. Previous data have demonstrated that the anti-HER2 C6.5 diabody (C6.5db) is an effective radiotracer in preclinical models of HER2-positive cancer. The aim of this study was to evaluate the impact on radiotracer performance, associated with expressing the C6.5db in the Pichia pastoris (P-C6.5db) system as compared to Escherichia coli (E. C6.5db). Glycosylation of P-C6.5db led to faster blood clearance and lower overall tumor uptake than seen with E. coli-produced C6.5db. However, P-C6.5db achieved high tumor/background ratios that are critical for effective imaging. Dosimetry measurements determined in this study for both 124I-P-C6.5db and 124I-E-C6.5db suggest that they are equivalent to other radiotracers currently being administered to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miles KA, Williams RE. Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging. 2008;8:81–6.

    Article  PubMed  CAS  Google Scholar 

  2. Kelloff GJ, et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res. 2005;11(8):2785–808.

    Article  PubMed  CAS  Google Scholar 

  3. Holbro T, Hynes NE. ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol. 2004;44:195–217.

    Article  PubMed  CAS  Google Scholar 

  4. Slamon DJ, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    Article  PubMed  CAS  Google Scholar 

  5. Sliwkowski MX, et al. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol. 1999;26(4 Suppl 12):60–70.

    PubMed  CAS  Google Scholar 

  6. Slamon DJ, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  PubMed  CAS  Google Scholar 

  7. Piccart-Gebhart MJ, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.

    Article  PubMed  CAS  Google Scholar 

  8. Cobleigh MA, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639–48.

    PubMed  CAS  Google Scholar 

  9. Vogel CL, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    Article  PubMed  CAS  Google Scholar 

  10. Zuckier LS, DeNardo GL. Trials and tribulations: oncological antibody imaging comes to the fore. Semin Nucl Med. 1997;27(1):10–29.

    Article  PubMed  CAS  Google Scholar 

  11. Reddy S, Robinson MK. Immuno-positron emission tomography in cancer models. Semin Nucl Med. 2010;40(3):182–9.

    Article  PubMed  Google Scholar 

  12. Dijkers EC, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87(5):586–92.

    Article  PubMed  CAS  Google Scholar 

  13. Sundaresan G, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med. 2003;44(12):1962–9.

    PubMed  CAS  Google Scholar 

  14. Lepin EJ, et al. An affinity matured minibody for PET imaging of prostate stem cell antigen (PSCA)-expressing tumors. Eur J Nucl Med Mol Imaging. 2010;37(8):1529–38.

    Article  PubMed  CAS  Google Scholar 

  15. Olafsen T, Kenanova VE, Wu AM. Tunable pharmacokinetics: modifying the in vivo half-life of antibodies by directed mutagenesis of the Fc fragment. Nat Protoc. 2006;1(4):2048–60.

    Article  PubMed  CAS  Google Scholar 

  16. Reddy S, et al. Evaluation of the anti-HER2 C6.5 diabody as a PET radiotracer to monitor HER2 status and predict response to trastuzumab treatment. Clin Cancer Res. 2011;17(6):1509–20.

    Article  PubMed  CAS  Google Scholar 

  17. Adams GP, et al. Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br J Cancer. 1998;77(9):1405–12.

    Article  PubMed  CAS  Google Scholar 

  18. Robinson MK, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res. 2005;65(4):1471–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kogelberg H, et al. Clearance mechanism of a mannosylated antibody–enzyme fusion protein used in experimental cancer therapy. Glycobiology. 2007;17(1):36–45.

    Article  PubMed  CAS  Google Scholar 

  20. Trimble RB, et al. Structure of oligosaccharides on Saccharomyces SUC2 invertase secreted by the methylotrophic yeast Pichia pastoris. J Biol Chem. 1991;266(34):22807–17.

    PubMed  CAS  Google Scholar 

  21. Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog. 2005;21(1):11–6.

    Article  PubMed  CAS  Google Scholar 

  22. Wacker C, et al. Glycosylation profiles of therapeutic antibody pharmaceuticals. Eur J Pharm Biopharm. 2011;79(3):503–7.

    Article  PubMed  CAS  Google Scholar 

  23. Tolner B, et al. Production of recombinant protein in Pichia pastoris by fermentation. Nat Protoc. 2006;1(2):1006–21.

    Article  PubMed  CAS  Google Scholar 

  24. Horak E, et al. Isolation of scFvs to in vitro produced extracellular domains of EGFR family members. Cancer Biother Radiopharm. 2005;20(6):603–13.

    Article  PubMed  CAS  Google Scholar 

  25. Adams GP, et al. Delivery of the alpha-emitting radioisotope bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nucl Med Biol. 2000;27(4):339–46.

    Article  PubMed  CAS  Google Scholar 

  26. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.

    PubMed  Google Scholar 

  27. Robinson MK, Weiner LM, Adams GP. Improving monoclonal antibodies for cancer therapy. Drug Dev Res. 2004;61:172–87.

    Article  CAS  Google Scholar 

  28. Adams GP, et al. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 1998;58(3):485–90.

    PubMed  CAS  Google Scholar 

  29. Gayed I, et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med. 2004;45(1):17–21.

    PubMed  CAS  Google Scholar 

  30. Stroobants S, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer. 2003;39(14):2012–20.

    Article  PubMed  CAS  Google Scholar 

  31. Kapty J, Murray D, Mercer J. Radiotracers for noninvasive molecular imaging of tumor cell death. Cancer Biother Radiopharm. 2010;25(6):615–28.

    Article  PubMed  Google Scholar 

  32. Yu JQ, Cristofanilli M. Circulating tumor cells and PET. J Nucl Med. 2011;52(10):1501–4.

    Article  PubMed  Google Scholar 

  33. Barwick T, et al. Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nucl Med Commun. 2009;30(12):908–17.

    Article  PubMed  CAS  Google Scholar 

  34. Gagel B, et al. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer. 2006;6:51.

    Article  PubMed  Google Scholar 

  35. Murakami Y, et al. 18F-labelled annexin V: a PET tracer for apoptosis imaging. Eur J Nucl Med Mol Imaging. 2004;31(4):469–74.

    Article  PubMed  CAS  Google Scholar 

  36. Liu A, et al. Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J Nucl Med. 1992;33(5):724–34.

    PubMed  CAS  Google Scholar 

  37. Choe YS, et al. Synthesis of 11 beta-[18F]fluoro-5 alpha-dihydrotestosterone and 11 beta-[18F]fluoro-19-nor-5 alpha-dihydrotestosterone: preparation via halofluorination-reduction, receptor binding, and tissue distribution. J Med Chem. 1995;38(5):816–25.

    Article  PubMed  CAS  Google Scholar 

  38. Beattie BJ, et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med. 2010;51(2):183–92.

    Article  PubMed  CAS  Google Scholar 

  39. Medzihradszky KF, et al. Glycoforms obtained by expression in Pichia pastoris improve cancer targeting potential of a recombinant antibody–enzyme fusion protein. Glycobiology. 2004;14(1):27–37.

    Article  PubMed  CAS  Google Scholar 

  40. Brierley RA. Secretion of recombinant human insulin-like growth factor I (IGF-I). Methods Mol Biol. 1998;103:149–77.

    PubMed  CAS  Google Scholar 

  41. Li H, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol. 2006;24(2):210–5.

    Article  PubMed  CAS  Google Scholar 

  42. Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell. 2002;111(7):927–30.

    Article  PubMed  CAS  Google Scholar 

  43. Bhatia J, et al. Catalytic activity of an in vivo tumor targeted anti-CEA scFv:carboxypeptidase G2 fusion protein. Int J Cancer. 2000;85(4):571–7.

    Article  PubMed  CAS  Google Scholar 

  44. Bretthauer RK, Castellino FJ. Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem. 1999;30(Pt 3):193–200.

    PubMed  CAS  Google Scholar 

  45. Oude Munnink TH. (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur J Cancer. 2010;46(3):678–84.

    Article  PubMed  CAS  Google Scholar 

  46. Divgi CR, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 2007;8(4):304–10.

    Article  PubMed  CAS  Google Scholar 

  47. Jayson GC, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst. 2002;94(19):1484–93.

    Article  PubMed  CAS  Google Scholar 

  48. Lee CL, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys. 2010;37(9):4861–7.

    Article  PubMed  Google Scholar 

  49. Gonzalez Trotter DE. Quantitation of small-animal (124)I activity distributions using a clinical PET/CT scanner. J Nucl Med. 2004;45(7):1237–44.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a HRSA grant to the American Russian Cancer Alliance and through support by an appropriation from the Commonwealth of Pennsylvania. Part of this work was supported by The Breast Cancer Campaign, UK. We thank G. Adams for scientific discussions. We acknowledge the Laboratory Animal Facility and the Instrument Shop at the Fox Chase Cancer Center for their expert technical assistance.

Conflicts of interest

Matthew Robinson is a member of the Scientific Advisory Board of Avipep, Pty Ltd. Avipep has licensed the C6.5db from University of California, San Francisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Robinson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J., Doss, M., McQuillen, R. et al. Impact of expression system on the function of the C6.5 diabody PET radiotracer. Tumor Biol. 33, 617–627 (2012). https://doi.org/10.1007/s13277-012-0361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0361-z

Keywords

Navigation