Tumor Biology

, Volume 33, Issue 3, pp 661–667 | Cite as

Nuclisome—targeting the tumor cell nucleus

  • Lars Gedda
  • Katarina Edwards
Research Article


The Nuclisome concept builds on a novel two-step targeting strategy with the aim to deliver short-range Auger-electron-emitting radionuclides to nuclear DNA of tumor cells. The concept is based on the use of Nuclisome-particles, i.e., tumor-targeted PEG-stabilized liposomes loaded with a unique DNA-intercalating compound that enables specific and effective delivery of radionuclides to DNA. The specific and potent two-step targeting leads to eradication of tumor cells while toxicity to normal organs is reduced to a minimum. Results of in vitro and in vivo studies point towards the Nuclisome concept as a promising strategy for the treatment of small tumor masses and, in particular, for the elimination of spread single cells and micrometastases.


Auger Intercalator Liposome Radionuclide DNA 



Financial support from the Swedish Cancer Society, the Swedish Research Council, and Stiftelsen Olle Engkvist Byggmästare is gratefully acknowledged.

Conflicts of interest



  1. 1.
    Fenske DB, Chonn A, Cullis PR. Liposomal nanomedicines: an emerging field. Toxicol Pathol. 2008;36(1):21–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Sapra P, Allen TM. Ligand-targeted liposomal anticancer drugs. Prog Lipid Res. 2003;42(5):439–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Elmroth K, Stenerlow B. DNA-incorporated 125I induces more than one double-strand break per decay in mammalian cells. Radiat Res. 2005;163(4):369–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Lundqvist H, Stenerlöw B, Gedda L. The Auger effect in molecular-targeting therapy. In: Stigbrand T, Adams G, Carlsson J, editors. Targeted radionuclide tumor therapy. Springer Sciences: Business Media B.V; 2008. p. 197–216.Google Scholar
  5. 5.
    Chen P, Wang J, Hope K, Jin L, Dick J, Cameron R, Brandwein J, Minden M, Reilly RM. Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med. 2006;47(5):827–36.PubMedGoogle Scholar
  6. 6.
    Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM. 111In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu amplified breast cancer. J Nucl Med. 2007;48(8):1357–68.PubMedCrossRefGoogle Scholar
  7. 7.
    Costantini DL, Villani DF, Vallis KA, Reilly RM. Methotrexate, paclitaxel, and doxorubicin radiosensitize HER2-amplified human breast cancer cells to the Auger electron-emitting radiotherapeutic agent 111In–NLS–trastuzumab. J Nucl Med. 2010;51(3):477–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Ginj M, Hinni K, Tschumi S, Schulz S, Maecke HR. Trifunctional somatostatin-based derivatives designed for targeted radiotherapy using Auger electron emitters. J Nucl Med. 2005;46(12):2097–103.PubMedGoogle Scholar
  9. 9.
    Sedlacek O, Hruby M, Studenovsky M, Kucka J, Vetvicka D, Kovar L, Rihova B, Ulbrich K. Ellipticine-aimed polymer-conjugated Auger electron emitter: multistage organelle targeting approach. Bioconjug Chem. 2011;22(6):1194–201.PubMedCrossRefGoogle Scholar
  10. 10.
    Bohl Kullberg E, Carlsson J, Edwards K, Capala J, Sjoberg S, Gedda L. Introductory experiments on ligand liposomes as delivery agents for boron neutron capture therapy. Int J Oncol. 2003;23(2):461–7.PubMedGoogle Scholar
  11. 11.
    Gedda L, Silvander M, Sjoberg S, Tjarks W, Carlsson J. Cytotoxicity and subcellular localization of boronated phenanthridinium analogues. Anticancer Drug Des. 1997;12(8):671–85.PubMedGoogle Scholar
  12. 12.
    Kullberg E, Bergstrand N, Carlsson J, Edwards K, Johnsson M, Sjoberg S, Gedda L. Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents. Bioconjug Chem. 2002;13(4):737–43.CrossRefGoogle Scholar
  13. 13.
    Kullberg EB, Nestor M, Gedda L. Tumor-cell targeted epidermal growth factor liposomes loaded with boronated acridine: uptake and processing. Pharm Res. 2003;20(2):229–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Kullberg EB, Stenerlow B, Ghirmai S, Lundqvist H, Malmstrom PU, Orlova A, Tolmachev V, Gedda L. An aminoacridine derivative for radionuclide therapy: DNA-binding properties studied in a novel cell-free in vitro assay. Int J Oncol. 2005;27(5):1355–60.PubMedGoogle Scholar
  15. 15.
    Wei Q, Kullberg EB, Gedda L. Trastuzumab-conjugated boron-containing liposomes for tumor cell targeting; development and cellular studies. Int J Oncol. 2003;23(4):1159–65.PubMedGoogle Scholar
  16. 16.
    Gabizon AA. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Res. 1992;52(4):891–6.PubMedGoogle Scholar
  17. 17.
    Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. U S A: Proc Natl Acad Sci. 1991;88(24):11460–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Ghirmai S, Mume E, Tolmachev V, Sjoberg S. Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohydr Res. 2005;340(1):15–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Ickenstein LM, Edwards K, Sjoberg S, Carlsson J, Gedda L. A novel 125I-labeled daunorubicin derivative for radionuclide-based cancer therapy. Nucl Med Biol. 2006;33(6):773–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen K, Adelstein SJ, Kassis AI. Molecular simulation of ligand binding with DNA: implications for 125I-labeled pharmaceutical design. Int J Radiat Biol. 2004;80(11–12):921–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Yanagie H, Tomita T, Kobayashi H, Fujii Y, Takahashi T, Hasumi K, Nariuchi H, Sekiguchi M. Application of boronated antiCEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model. Br J Cancer. 1991;63(4):522–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Pan XQ, Wang H, Shukla S, Sekido M, Adams DM, Tjarks W, Barth RF, Lee RJ. Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Bioconjug Chem. 2002;13(3):435–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Park JW, Hong K, Carter P, Asgari H, Guo LY, Keller GA, Wirth C, Shalaby R, Kotts C, Wood WI, et al. Development of anti-p185HER2 immunoliposomes for cancer therapy. U S A: Proc Natl Acad Sci. 1995;92(5):1327–31.PubMedCrossRefGoogle Scholar
  25. 25.
    de Menezes DE Lopes, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 1998;58(15):3320–30.Google Scholar
  26. 26.
    Sun M, Wang Y, Shen J, Xiao Y, Su Z, Ping Q. Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo. Nanotechnology. 2010;21(47):475101.PubMedCrossRefGoogle Scholar
  27. 27.
    Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19(56):6550–65.PubMedCrossRefGoogle Scholar
  28. 28.
    El-Rayes BF, LoRusso PM. Targeting the epidermal growth factor receptor. Br J Cancer. 2004;91(3):418–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Ranson M, Sliwkowski MX. Perspectives on antiHER monoclonal antibodies. Oncology. 2002;63 Suppl 1:17–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Spano JP, Fagard R, Soria JC, Rixe O, Khayat D, Milano G. Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol. 2005;16(2):189–94.PubMedCrossRefGoogle Scholar
  31. 31.
    Nielsen UB, Kirpotin DB, Pickering EM, Hong K, Park JW, Refaat Shalaby M, Shao Y, Benz CC, Marks JD. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim Biophys Acta. 2002;1591(1-3):109–18.PubMedCrossRefGoogle Scholar
  32. 32.
    Fondell A, Edwards K, Ickenstein LM, Sjoberg S, Carlsson J, Gedda L. Nuclisome: a novel concept for radionuclide therapy using targeting liposomes. Eur J Nucl Med Mol Imaging. 2010;37(1):114–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Fondell A, Edwards K, Unga J, Kullberg E, Park JW, Gedda L. In vitro evaluation and biodistribution of HER2-targeted liposomes loaded with an 125I-labelled DNA-intercalator. J Drug Target. 2011;19(9):846–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta. 1986;857(1):123–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8(4):1172–81.PubMedGoogle Scholar
  36. 36.
    Gedda L, Fondell A, Lundqvist H, Park JW, Edwards K. Experimental radionuclide therapy of HER2-expressing xenografts using two-step targeting Nuclisome-particles. Journal of Nuclear Medicine. 2011. Accepted.Google Scholar
  37. 37.
    Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med. 2005;46 Suppl 1:4S–12S.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  1. 1.Department of Radiology, Oncology and Radiation Sciences, Unit of Biomedical Radiation Sciences, Rudbeck LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Department of Physical and Analytical ChemistryUppsala UniversityUppsalaSweden
  3. 3.FRIAS, School of Soft Matter ResearchUniversity of FreiburgFreiburgGermany

Personalised recommendations