Tumor Biology

, Volume 33, Issue 4, pp 1005–1014 | Cite as

Prognostic significance of transforming growth factor beta (TGF-β) signaling axis molecules and E-cadherin in colorectal cancer

  • Pavlos Lampropoulos
  • Adamantia Zizi-Sermpetzoglou
  • Spyros Rizos
  • Alkiviadis Kostakis
  • Nikolaos Nikiteas
  • Athanasios G. Papavassiliou
Research Article


The transforming growth factor beta (TGF-β) signaling pathway has been considered both a tumor suppressor and a cancer promoter. Additionally, downregulation of cell adhesion molecules such as E-cadherin plays an important role in the metastatic potential of colorectal cancer (CRC). The aim of the present study was to evaluate TGF-β, TGF-β type I receptor (TGF-βR1), TGF-β type II receptor (TGF-βR2), Smad4, pSmad2/3, and E-cadherin expression in colorectal carcinoma and to correlate the obtained data with other standard prognostic parameters, such as disease stage, metastases, and patient survival. TGF-β, TGF-βR1, TGF-βR2, Smad4, pSmad2/3, and E-cadherin expression was evaluated immunohistochemically in 195 unrelated CRC specimens and the results subjected to various statistical analyses. TGF-β was expressed in 71.28%, TGF-βR1 in 61.0%, TGF-βR2 in 54.4%, Smad4 in 61.5%, pSmad2/3 in 71.3%, and E-cadherin in 50.26% of the colorectal carcinoma samples tested. The correlation of immunoexpression with the clinicopathological parameters of CRC revealed that the high expression of TGF-β and low expression of TGF-βR1, TGF-βR2, Smad4, pSmad2/3, and E-cadherin were correlated with tumor–node–metastasis (TNM) stage of disease. High TGF-β expression and low TGF-βR1, TGF-βR2, Smad4, and pSmad2/3 expression were also correlated with lymph node metastasis. The Kaplan–Meier survival curves demonstrated a clear association of cancer-specific overall survival with high TGF-β, as well as low TGF-βR1, TGF-βR2, Smad4, pSmad2/3, and E-cadherin expression. Our results suggest that TGF-β, TGF-βR1, TGF-βR2, Smad4, pSmad2/3, and E-cadherin are closely related to TNM stage of CRC. Moreover, TGF-β, TGF-βR2, Smad4, pSmad2/3, and E-cadherin emerge as valuable independent biomarkers of prognosis in CRC patients.


TGF-β signaling Smads E-cadherin Colorectal cancer (CRC) 


Conflicts of interest



  1. 1.
    Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.PubMedCrossRefGoogle Scholar
  3. 3.
    Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Miyazono K, ten Dijke P, Heldin CH. TGF-beta signaling by Smad proteins. Adv Immunol. 2000;75:115–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Akhurst RJ, Derynck R. TGF-beta signaling in cancer -a double- edged sword. Trends Cell Biol. 2001;11:S44–51.PubMedGoogle Scholar
  6. 6.
    Beach JR, Hussey GS, Miller TE, et al. Myosin II isoform switching mediates invasiveness after TGF-β-induced epithelial-mesenchymal transition. Proc Natl Acad Sci USA. 2011;108:17991–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Sylvie J, Ellen C, Kris V. The role of Wnt in cell signaling and cell adhesion during early vertebrate development. Front Biosci. 2011;17:2352–66.PubMedGoogle Scholar
  8. 8.
    Meulmeester E, Ten Dijke P. The dynamic roles of TGF-β in cancer. J Pathol. 2011;223:205–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198:11–26.PubMedGoogle Scholar
  10. 10.
    Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg. 2000;87:992–1005.PubMedCrossRefGoogle Scholar
  11. 11.
    Kinsella AR, Green B, Lepts GC, Hill CL, Bowie G, Taylor BA. The role of the cell-cell adhesion molecule E-cadherin in large bowel tumour cell invasion and metastasis. Br J Cancer. 1993;67:904–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Hugh TJ, Dillon SA, Taylor BA, Pignatelli M, Poston GJ, Kinsella AR. Cadherin-catenin expression in primary colorectal cancer: a survival analysis. Br J Cancer. 1999;80:1046–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Dorudi S, Hanby AM, Poulsom R, Northover J, Hart IR. Level of expression of E-cadherin mRNA in colorectal cancer correlates with clinical outcome. Br J Cancer. 1995;71:614–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Karamitopoulou E, Zlobec I, Patsouris E, Peros G, Lugli A. Loss of E-cadherin independently predicts the lymph node status in colorectal cancer. Pathology. 2011;43:133–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Ikeguchi M, Taniguchi T, Makino M, Kaibara N. Reduced E-cadherin expression and enlargement of cancer nuclei strongly correlate with hematogenic metastasis in colorectal adenocarcinoma. Scand J Gastroenterol. 2000;35:839–46.PubMedCrossRefGoogle Scholar
  16. 16.
    Sobin LH, Wittenkind C. TNM classification of malignant tumors. 6th ed. New York: Wiley; 2002. Internatrional Union Against cancer.Google Scholar
  17. 17.
    Natsugoe S, Xiangming C, Matsumoto M, et al. Smad4 and transforming growth factor beta1 expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res. 2002;8:1838–42.PubMedGoogle Scholar
  18. 18.
    Saito H, Tsujitani S, Oka S, et al. The expression of transforming growth factor-beta1 is significantly correlated with the expression of vascular endothelial growth factor and poor prognosis of patients with advanced gastric carcinoma. Cancer. 1999;86:1455–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Kinugasa S, Abe S, Tachibana M, et al. Overexpression of transforming growth factor-beta1 in scirrhous carcinoma of the stomach correlates with decreased survival. Oncology. 1998;55:582–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Wu ZY, Zhan WH, Li JH, et al. Expression of E-cadherin in gastric carcinoma and its correlation with lymph node micrometastasis. World J Gastroenterol. 2005;11:3139–43.PubMedGoogle Scholar
  21. 21.
    Yu C, Liu Y, Huang D, et al. TGF-β1 mediates epithelial to mesenchymal transition via the TGF-β/Smad pathway in squamous cell carcinoma of the head and neck. Oncol Rep. 2011;25:1581–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim AN, Jeon WK, Lim KH, Lee HY, Kim WJ, Kim BC. Fyn mediates transforming growth factor-beta1-induced down-regulation of E-cadherin in human A549 lung cancer cells. Biochem Biophys Res Commun. 2011;407:181–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Xu Z, Jiang Y, Steed H, Davidge S, Fu Y. TGFβ and EGF synergistically induce a more invasive phenotype of epithelial ovarian cancer cells. Biochem Biophys Res Commun. 2010;401:376–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Wendt MK, Smith JA, Schiemann WP. Transforming growth factor-β-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene. 2010;29:6485–98.PubMedCrossRefGoogle Scholar
  25. 25.
    Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res. 2005;6:56.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim JH, Jang YS, Eom KS, et al. Transforming growth factor beta1 induces epithelial-to-mesenchymal transition of A549 cells. J Korean Med Sci. 2007;22:898–904.PubMedCrossRefGoogle Scholar
  27. 27.
    Wieser R. The transforming growth factor-beta signaling pathway in tumorigenesis. Curr Opin Oncol. 2001;13:70–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol. 1998;8:1243–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82:85–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A. High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev. 1995;4:549–54.PubMedGoogle Scholar
  31. 31.
    Tsushima H, Kawata S, Tamura S, et al. High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology. 1996;110:375–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Faleiro-Rodrigues C, Macedo-Pinto I, Pereira D, Ferreira VM, Lopes CS. Association of E-cadherin and beta-catenin immunoexpression with clinicopathologic features in primary ovarian carcinomas. Hum Pathol. 2004;35:663–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhao XJ, Li H, Chen H, et al. Expression of e-cadherin and beta-catenin in human esophageal squamous cell carcinoma: relationships with prognosis. World J Gastroenterol. 2003;9:225–32.PubMedGoogle Scholar
  34. 34.
    Mialhe A, Louis J, Montlevier S, et al. Expression of E-cadherin and alpha-, beta- and gamma-catenins in human bladder carcinomas: are they good prognostic factors? Invasion Metastasis. 1997;17:124–37.PubMedGoogle Scholar
  35. 35.
    Pignatelli M, Ansari TW, Gunter P, et al. Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J Pathol. 1994;174:243–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Bukholm IK, Nesland JM, Kåresen R, Jacobsen U, Børresen-Dale AL. E-cadherin and alpha-, beta-, and gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol. 1998;185:262–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Zolota V, Batistatou A, Tsamandas AC, Iliopoulos G, Scopa CD, Bonikos DS. Immunohistochemical expression of TGF-beta1, p21WAF1, p53, Ki67, and angiogenesis in gastric carcinomas: a clinicopathologic study. Int J Gastrointest Cancer. 2002;32:83–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Tsamandas AC, Kardamakis D, Ravazoula P, et al. The potential role of TGFbeta1, TGFbeta2 and TGFbeta3 protein expression in colorectal carcinomas. Correlation with classic histopathologic factors and patient survival. Strahlenther Onkol. 2004;180:201–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Royce SG, Alsop K, Haydon A, et al. The role of SMAD4 in early-onset colorectal cancer. Colorectal Dis. 2010;12:213–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Xu Y, Pasche B. TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet. 2007;16:R14–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang J, Sun L, Myeroff L, et al. Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem. 1995;270:22044–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Pasche B, Kolachana P, Nafa K, et al. TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999;59:5678–82.PubMedGoogle Scholar
  43. 43.
    Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun. 2003;306:799–804.PubMedCrossRefGoogle Scholar
  44. 44.
    Eppert K, Scherer SW, Ozcelik H, et al. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996;86:543–52.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Pavlos Lampropoulos
    • 1
  • Adamantia Zizi-Sermpetzoglou
    • 2
  • Spyros Rizos
    • 1
  • Alkiviadis Kostakis
    • 3
  • Nikolaos Nikiteas
    • 3
  • Athanasios G. Papavassiliou
    • 4
  1. 1.First Department of Surgery“Tzaneio” General HospitalAthensGreece
  2. 2.Department of Pathology“Tzaneio” General HospitalAthensGreece
  3. 3.Second Department of Propaedeutic SurgeryUniversity of Athens Medical SchoolAthensGreece
  4. 4.Department of Biological ChemistryUniversity of Athens Medical SchoolAthensGreece

Personalised recommendations