Advertisement

Tumor Biology

, Volume 33, Issue 3, pp 689–700 | Cite as

Gene expression profiling in MOLT-4 cells during gamma-radiation-induced apoptosis

  • Theres Lindgren
  • Torgny Stigbrand
  • Katrine Riklund
  • Lennart Johansson
  • David Eriksson
Research Article

Abstract

This study aims to identify the temporal changes in gene expression in MOLT-4, a leukemia cell line, in response to radiation and to present a comprehensive description of the pathways and processes that most significantly relate to the cellular biological responses. A global gene expression profile of 24,500 genes was performed on MOLT-4 tumor cells following exposure to 5 Gy of ionizing radiation (60Co) using a bead chip array (Illumina). Signaling pathways and processes significantly altered following irradiation were explored using MetaCore. Cellular viability [3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], activation of cell cycle checkpoints [fluorescence activated cell sorting (FACS)], and induction of apoptosis (FACS, caspase assays) were evaluated to correlate these biological responses to the gene expression changes. Totally, 698 different genes displayed a significantly altered expression following radiation, and out of these transcripts, all but one showed increased expression. One hour following irradiation, the expression was changed only for a few genes. Striking changes appeared at later time-points. From 3 to 24 h post-irradiation, a significant fraction of the genes with altered expression were found to be involved in cell cycle checkpoints and their regulation (CDKN1A), DNA repair (GADD45A, DDB2, XPC), apoptosis induction (DR5, FasR, Apo-2L, Bax), and T-cell activation/proliferation (CD70, OX40L). Irradiated MOLT-4 cells were arrested at the G2-checkpoint, followed by a decrease in cell viability, most pronounced 48 h after exposure. The cell death was executed by induced apoptosis and was visualized by an increase in subG1 cells and an increased activation of initiator (caspase-8 and caspase-9) and execution (caspase-3) caspases. Activation of cell cycle arrest and apoptosis correlated well in time with the changes in gene expression of those genes important for these biological processes. Activation of the apoptotic signaling pathways in MOLT-4 cells following irradiation includes components from the intrinsic as well as the extrinsic apoptotic pathways. This study indicates that the altered gene expression pattern induced by irradiation is important for the sequential steps observed in MOLT-4 cells during apoptosis induction.

Keywords

Apoptosis Radiation Gene expression Leukemia Microarray 

Notes

Acknowledgments

This project was financed by the Swedish Cancer Society, the Lions Foundation in Umeå, the county of Västerbotten and Umeå University

Supplementary material

13277_2012_329_MOESM1_ESM.doc (637 kb)
ESM 1 (DOC 637 kb)
13277_2012_329_MOESM2_ESM.xls (14 kb)
ESM 2 (XLS 14 kb)

References

  1. 1.
    Helton ES, Chen X. p53 modulation of the DNA damage response. J Cell Biochem. 2007;100(4):883–96. doi: 10.1002/jcb.21091.PubMedCrossRefGoogle Scholar
  2. 2.
    Jonathan EC, Bernhard EJ, McKenna WG. How does radiation kill cells? Curr Opin Chem Biol. 1999;3(1):77–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Cuddihy AR, Bristow RG. The p53 protein family and radiation sensitivity: yes or no? Cancer Metastasis Rev. 2004;23(3–4):237–57. doi: 10.1023/B:CANC.0000031764.81141.e4.PubMedCrossRefGoogle Scholar
  4. 4.
    Fei P, El-Deiry WS. P53 and radiation responses. Oncogene. 2003;22(37):5774–83. doi: 10.1038/sj.onc.1206677.PubMedCrossRefGoogle Scholar
  5. 5.
    Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928–42. doi: j.ijrobp.2004.03.005/j.ijrobp.2004.03.005.PubMedCrossRefGoogle Scholar
  6. 6.
    Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002;2(8):594–604. doi: 10.1038/nrc864.PubMedCrossRefGoogle Scholar
  7. 7.
    Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897–907. doi: 10.1038/nrm1496.PubMedCrossRefGoogle Scholar
  8. 8.
    Timmer JC, Salvesen GS. Caspase substrates. Cell Death Differ. 2007;14(1):66–72. doi: 10.1038/sj.cdd.4402059.PubMedCrossRefGoogle Scholar
  9. 9.
    Adams JM. Ways of dying: multiple pathways to apoptosis. Genes Dev. 2003;17(20):2481–95. doi: 10.1101/gad.1126903.PubMedCrossRefGoogle Scholar
  10. 10.
    Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol. 2010;31(4):363–72. doi: 10.1007/s13277-010-0042-8.PubMedCrossRefGoogle Scholar
  11. 11.
    Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther. 2005;4(2):139–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1):47–59. doi: 10.1038/nrm2308.PubMedCrossRefGoogle Scholar
  13. 13.
    Gong B, Chen Q, Endlich B, Mazumder S, Almasan A. Ionizing radiation-induced, Bax-mediated cell death is dependent on activation of cysteine and serine proteases. Cell Growth Differ. 1999;10(7):491–502.PubMedGoogle Scholar
  14. 14.
    Alvarez S, Drane P, Meiller A, Bras M, Deguin-Chambon V, Bouvard V, May E. A comprehensive study of p53 transcriptional activity in thymus and spleen of gamma irradiated mouse: high sensitivity of genes involved in the two main apoptotic pathways. Int J Radiat Biol. 2006;82(11):761–70. doi: 10.1080/09553000600949624.PubMedCrossRefGoogle Scholar
  15. 15.
    Burns TF, Bernhard EJ, El-Deiry WS. Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene. 2001;20(34):4601–12. doi: 10.1038/sj.onc.1204484.PubMedCrossRefGoogle Scholar
  16. 16.
    Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS, Fornace Jr AJ, el-Deiry WS. p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res. 1998;58(8):1593–8.PubMedGoogle Scholar
  17. 17.
    Wu GS, Burns TF, McDonald 3rd ER, Jiang W, Meng R, Krantz ID, Kao G, Gan DD, Zhou JY, Muschel R, Hamilton SR, Spinner NB, Markowitz S, Wu G, el-Deiry WS. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet. 1997;17(2):141–3. doi: 10.1038/ng1097-141.PubMedCrossRefGoogle Scholar
  18. 18.
    Embree-Ku M, Venturini D, Boekelheide K. Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biol Reprod. 2002;66(5):1456–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Kobayashi T, Ruan S, Jabbur JR, Consoli U, Clodi K, Shiku H, Owen-Schaub LB, Andreeff M, Reed JC, Zhang W. Differential p53 phosphorylation and activation of apoptosis-promoting genes Bax and Fas/APO-1 by irradiation and ara-C treatment. Cell Death Differ. 1998;5(7):584–91. doi: 10.1038/sj.cdd.4400382.PubMedCrossRefGoogle Scholar
  20. 20.
    Sheard MA, Uldrijan S, Vojtesek B. Role of p53 in regulating constitutive and X-radiation-inducible CD95 expression and function in carcinoma cells. Cancer Res. 2003;63(21):7176–84.PubMedGoogle Scholar
  21. 21.
    Sheard MA, Vojtesek B, Janakova L, Kovarik J, Zaloudik J. Up-regulation of Fas (CD95) in human p53wild-type cancer cells treated with ionizing radiation. Int J Cancer. 1997;73(5):757–62. doi: 10.1002/(SICI)1097-0215(19971127)73:5<757::AID-IJC24>3.0.CO;2-1.PubMedCrossRefGoogle Scholar
  22. 22.
    Kastan M. On the TRAIL from p53 to apoptosis? Nat Genet. 1997;17(2):130–1. doi: 10.1038/ng1097-130.PubMedCrossRefGoogle Scholar
  23. 23.
    Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17(6):1675–87. doi: 10.1093/emboj/17.6.1675.PubMedCrossRefGoogle Scholar
  24. 24.
    Akagi Y, Ito K, Sawada S. Radiation-induced apoptosis and necrosis in Molt-4 cells: a study of dose–effect relationships and their modification. Int J Radiat Biol. 1993;64(1):47–56.PubMedCrossRefGoogle Scholar
  25. 25.
    Shinohara K, Nakano H. Interphase death and reproductive death in X-irradiated MOLT-4 cells. Radiat Res. 1993;135(2):197–205.PubMedCrossRefGoogle Scholar
  26. 26.
    Eriksson D, Lofroth PO, Johansson L, Riklund KA, Stigbrand T. Cell cycle disturbances and mitotic catastrophes in HeLa Hep2 cells following 2.5 to 10 Gy of ionizing radiation. Clin Cancer Res. 2007;13(18 Pt 2):5501s–8s.PubMedCrossRefGoogle Scholar
  27. 27.
    Epstein RJ, Watson JV, Smith PJ. Subpopulation analysis of drug-induced cell-cycle delay in human tumor cells using 90 degrees light scatter. Cytometry. 1988;9(4):349–58. doi: 10.1002/cyto.990090412.PubMedCrossRefGoogle Scholar
  28. 28.
    Eriksson D, Blomberg J, Lindgren T, Lofroth PO, Johansson L, Riklund K, Stigbrand T. Iodine-131 induces mitotic catastrophes and activates apoptotic pathways in HeLa Hep2 cells. Cancer Biother Radiopharm. 2008;23(5):541–9. doi: 10.1089/cbr.2007.0471.PubMedCrossRefGoogle Scholar
  29. 29.
    Eriksson D, Lofroth PO, Johansson L, Riklund K, Stigbrand T. Apoptotic signalling in HeLa Hep2 cells following 5 Gy of cobalt-60 gamma radiation. Anticancer Res. 2009;29(11):4361–6.PubMedGoogle Scholar
  30. 30.
    Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst). 2004;3(8–9):997–1007. doi: j.ijrobp.2004.03.005/j.dnarep.2004.03.006.CrossRefGoogle Scholar
  31. 31.
    Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40(2):179–204. doi: j.ijrobp.2004.03.005/j.molcel.2010.09.019.PubMedCrossRefGoogle Scholar
  32. 32.
    Rieger KE, Chu G. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res. 2004;32(16):4786–803. doi: 10.1093/nar/gkh783.PubMedCrossRefGoogle Scholar
  33. 33.
    Sugasawa K. Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res. 2010;685(1–2):29–37. doi: j.ijrobp.2004.03.005/j.mrfmmm.2009.08.004.PubMedGoogle Scholar
  34. 34.
    Laukens D, Waeytens A, De Bleser P, Cuvelier C, De Vos M. Human metallothionein expression under normal and pathological conditions: mechanisms of gene regulation based on in silico promoter analysis. Crit Rev Eukaryot Gene Expr. 2009;19(4):301–17.PubMedGoogle Scholar
  35. 35.
    Ghandhi SA, Sinha A, Markatou M, Amundson SA. Time-series clustering of gene expression in irradiated and bystander fibroblasts: an application of FBPA clustering. BMC Genomics. 2011;12:2. doi: 10.1186/1471-2164-12-2.PubMedCrossRefGoogle Scholar
  36. 36.
    Endlich B, Radford IR, Forrester HB, Dewey WC. Computerized video time-lapse microscopy studies of ionizing radiation-induced rapid-interphase and mitosis-related apoptosis in lymphoid cells. Radiat Res. 2000;153(1):36–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Gong B, Almasan A. Apo2 ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer Res. 2000;60(20):5754–60.PubMedGoogle Scholar
  38. 38.
    Takahashi K, Inanami O, Hayashi M, Kuwabara M. Protein synthesis-dependent apoptotic signalling pathway in X-irradiated MOLT-4 human leukaemia cell line. Int J Radiat Biol. 2002;78(2):115–24. doi: 10.1080/09553000110076472.PubMedCrossRefGoogle Scholar
  39. 39.
    Luce A, Courtin A, Levalois C, Altmeyer-Morel S, Romeo PH, Chevillard S, Lebeau J. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis. 2009;30(3):432–9. doi: 10.1093/carcin/bgp008.PubMedCrossRefGoogle Scholar
  40. 40.
    Huang J, Wang QJ, Yang S, Li YF, El-Gamil M, Rosenberg SA, Robbins PF. Irradiation enhances human T-cell function by upregulating CD70 expression on antigen-presenting cells in vitro. J Immunother. 2011;34(4):327–35. doi: 10.1097/CJI.0b013e318216983d.PubMedCrossRefGoogle Scholar
  41. 41.
    Diegmann J, Junker K, Loncarevic IF, Michel S, Schimmel B, von Eggeling F. Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. Neoplasia. 2006;8(11):933–8. doi: 10.1593/neo.06451.PubMedCrossRefGoogle Scholar
  42. 42.
    Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J Exp Med. 1994;180(2):757–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Goodwin RG, Din WS, Davis-Smith T, Anderson DM, Gimpel SD, Sato TA, Maliszewski CR, Brannan CI, Copeland NG, Jenkins NA, et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol. 1993;23(10):2631–41. doi: 10.1002/eji.1830231037.PubMedCrossRefGoogle Scholar
  44. 44.
    Hintzen RQ, Lens SM, Lammers K, Kuiper H, Beckmann MP, van Lier RA. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J Immunol. 1995;154(6):2612–23.PubMedGoogle Scholar
  45. 45.
    Cheng J, Haas M. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines. Mol Cell Biol. 1990;10(10):5502–9.PubMedGoogle Scholar
  46. 46.
    Chow VT, Quek HH, Tock EP. Alternative splicing of the p53 tumor suppressor gene in the Molt-4 T-lymphoblastic leukemia cell line. Cancer Lett. 1993;73(2–3):141–8.PubMedCrossRefGoogle Scholar
  47. 47.
    O'Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, Monks A, Sausville EA, Weinstein JN, Friend S, Fornace Jr AJ, Kohn KW. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 1997;57(19):4285–300.PubMedGoogle Scholar
  48. 48.
    Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, Lane DP. p53 mutations in colorectal cancer. Proc Natl Acad Sci U S A. 1990;87(19):7555–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Khoury MP, Bourdon JC. p53 isoforms: an intracellular microprocessor? Genes Cancer. 2011;2(4):453–65. doi: 10.1177/1947601911408893.PubMedCrossRefGoogle Scholar
  50. 50.
    Harms K, Nozell S, Chen X. The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci. 2004;61(7–8):822–42. doi: 10.1007/s00018-003-3304-4.PubMedCrossRefGoogle Scholar
  51. 51.
    Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9(5):402–12. doi: 10.1038/nrm2395.PubMedCrossRefGoogle Scholar
  52. 52.
    Yu J, Zhang L. The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun. 2005;331(3):851–8. doi: j.ijrobp.2004.03.005/j.bbrc.2005.03.189.PubMedCrossRefGoogle Scholar
  53. 53.
    Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 1993;362(6423):849–52. doi: 10.1038/362849a0.PubMedCrossRefGoogle Scholar
  54. 54.
    Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993;362(6423):847–9. doi: 10.1038/362847a0.PubMedCrossRefGoogle Scholar
  55. 55.
    Bohlig L, Rother K. One function—multiple mechanisms: the manifold activities of p53 as a transcriptional repressor. J Biomed Biotechnol. 2011;2011:464916. doi: 10.1155/2011/464916.PubMedCrossRefGoogle Scholar
  56. 56.
    Spurgers KB, Gold DL, Coombes KR, Bohnenstiehl NL, Mullins B, Meyn RE, Logothetis CJ, McDonnell TJ. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem. 2006;281(35):25134–42. doi: 10.1074/jbc.M513901200.PubMedCrossRefGoogle Scholar
  57. 57.
    Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature. 1996;381(6584):713–6. doi: 10.1038/381713a0.PubMedCrossRefGoogle Scholar
  58. 58.
    Davies C, Hogarth LA, Dietrich PA, Bachmann PS, Mackenzie KL, Hall AG, Lock RB. p53-independent epigenetic repression of the p21(WAF1) gene in T-cell acute lymphoblastic leukemia. J Biol Chem. 2011;286(43):37639–50. doi: 10.1074/jbc.M111.272336.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  • Theres Lindgren
    • 1
  • Torgny Stigbrand
    • 1
  • Katrine Riklund
    • 2
  • Lennart Johansson
    • 3
  • David Eriksson
    • 1
  1. 1.Department of ImmunologyUmeå UniversityUmeåSweden
  2. 2.Department of Diagnostic RadiologyUmeå UniversityUmeåSweden
  3. 3.Department of Radiation PhysicsUmeå UniversityUmeåSweden

Personalised recommendations