Skip to main content

Advertisement

Log in

Antiproliferative effects of selective cyclooxygenase-2 inhibitor modulated by nimotuzumab in estrogen-dependent breast cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Breast cancer is the most common malignancy in women, and many breast cancer patients fail conventional treatment strategies of chemotherapy, radiation, and antiestrogen therapy. Research into the molecular pathways and biomarkers involved in the development of breast cancer should yield information that will guide therapeutic decisions. Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are involved in the carcinogenesis of breast cancer and exist tight crosstalk with estrogen receptor (ER) pathway. Combination of EGFR and COX-2 inhibitors, therefore, could be an effective strategy for reducing cell growth in estrogen-dependent breast cancer. In order to verify the effects of EGFR and COX-2 inhibitors, breast cancer cells MCF-7 and SKBR-3 were characterized for receptors status and then treated with respective inhibitors (nimotuzumab and celecoxib) alone and in combination. Both cell lines were sensitive to celecoxib, but not to nimotuzumab. However, combination of two drugs demonstrated synergistic effects on cell killing. Moreover, association of two drugs resulted in SKBR-3 cells, a further G0/G1 phase arrest than one drug alone. Downregulation of p-EGFR, p-Akt, p-mTOR, and amplified in breast cancer 1 (AIB1) were observed in both cell lines, and upregulation of E-cadherin was only found in MCF-7, after treatment with single agent or in combination. These studies suggest that nimotuzumab and celecoxib exert synergistic antiproliferation effects in breast cancer, which partly correlates with ER status. Due to Akt/mTOR, EMT and AIB1 pathways participate in this process, therefore, E-cadherin and AIB1 may be considered as possible biomarkers to predict response in ER-positive breast cancer cells treated with EGFR and COX-2 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    PubMed  Google Scholar 

  2. Hassett MJ, O'Malley AJ, Pakes JR, Newhouse JP, Earle CC. Frequency and cost of chemotherapy-related serious adverse effects in a population sample of women with breast cancer. J Natl Cancer Inst. 2006;98:1108–17.

    PubMed  Google Scholar 

  3. Farquhar CM, Marjoribanks J, Lethaby A, Basser R. High dose chemotherapy for poor prognosis breast cancer: systematic review and meta-analysis. Cancer Treat Rev. 2007;33:325–37.

    CAS  PubMed  Google Scholar 

  4. Campos SM. Anti-epidermal growth factor receptor strategies for advanced breast cancer. Cancer Invest. 2008;26:757–68.

    PubMed  Google Scholar 

  5. Pietras RJ. Interactions between estrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J. 2003;9:361–73.

    CAS  PubMed  Google Scholar 

  6. Osborne CK, Shou J, Massarweh S, Schiff R. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res. 2005;11:865s–70s.

    CAS  PubMed  Google Scholar 

  7. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massague J. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Corkery B, Crown J, Clynes M, O'Donovan N. Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol. 2009;20:862–7.

    CAS  PubMed  Google Scholar 

  9. Gholam D, Chebib A, Hauteville D, Bralet MP, Jasmin C. Combined paclitaxel and cetuximab achieved a major response on the skin metastases of a patient with epidermal growth factor receptor-positive, estrogen receptor-negative, progesterone receptor-negative and human epidermal growth factor receptor-2-negative (triple-negative) breast cancer. Anticancer Drugs. 2007;18:835–7.

    CAS  PubMed  Google Scholar 

  10. Cuzick J, DeCensi A, Arun B, Brown PH, Castiglione M, Dunn B, Forbes JF, Glaus A, Howell A, von Minckwitz G, Vogel V, Zwierzina H. Preventive therapy for breast cancer: a consensus statement. Lancet Oncol. 2011;12:496–503.

    CAS  PubMed  Google Scholar 

  11. Kao J, Sikora AT, Fu S. Dual EGFR and COX-2 inhibition as a novel approach to targeting head and neck squamous cell carcinoma. Curr Cancer Drug Targets. 2009;9:931–7.

    CAS  PubMed  Google Scholar 

  12. Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med. 2002;8:289–93.

    CAS  PubMed  Google Scholar 

  13. Han C, Michalopoulos GK, Wu T. Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol. 2006;207:261–70.

    CAS  PubMed  Google Scholar 

  14. Choy H, Milas L. Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst. 2003;95:1440–52.

    CAS  PubMed  Google Scholar 

  15. Basu GD, Pathangey LB, Tinder TL, Lagioia M, Gendler SJ, Mukherjee P. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer. Mol Cancer Res. 2004;2:632–42.

    CAS  PubMed  Google Scholar 

  16. Harris RE, Beebe-Donk J, Alshafie GA. Cancer chemoprevention by cyclooxygenase 2 (COX-2) blockade: results of case control studies. Subcell Biochem. 2007;42:193–212.

    PubMed  Google Scholar 

  17. Zhang J, Ding EL, Song Y. Adverse effects of cyclooxygenase 2 inhibitors on renal and arrhythmia events: meta-analysis of randomized trials. JAMA. 2006;296:1619–32.

    CAS  PubMed  Google Scholar 

  18. Ashok V, Dash C, Rohan TE, Sprafka JM, Terry PD. Selective cyclooxygenase-2 (COX-2) inhibitors and breast cancer risk. Breast. 2011;20:66–70.

    PubMed  Google Scholar 

  19. Pierga JY, Delaloge S, Espie M, Brain E, Sigal-Zafrani B, Mathieu MC, Bertheau P, Guinebretiere JM, Spielmann M, Savignoni A, Marty M. A multicenter randomized phase II study of sequential epirubicin/cyclophosphamide followed by docetaxel with or without celecoxib or trastuzumab according to HER2 status, as primary chemotherapy for localized invasive breast cancer patients. Breast Cancer Res Treat. 2010;122:429–37.

    CAS  PubMed  Google Scholar 

  20. Chow LW, Yip AY, Chu WP, Loo WT, Toi M. Bone metabolism and quality-of-life of postmenopausal women with invasive breast cancer receiving neoadjuvant hormonal therapy: sub-analyses from celecoxib anti-aromatase neoadjuvant (CAAN) trial. J Steroid Biochem Mol Biol. 2011;125:112–9.

    CAS  PubMed  Google Scholar 

  21. Lanza-Jacoby S, Burd R, Rosato Jr FE, McGuire K, Little J, Nougbilly N, Miller S. Effect of simultaneous inhibition of epidermal growth factor receptor and cyclooxygenase-2 in HER-2/Neu-positive breast cancer. Clin Cancer Res. 2006;12:6161–9.

    CAS  PubMed  Google Scholar 

  22. Hu ZY, Zhu XF, Zhong ZD, Sun J, Wang J, Yang D, Zeng YX. Apog2, a novel inhibitor of antiapoptotic Bcl-2 family proteins, induces apoptosis and suppresses tumor growth in nasopharyngeal carcinoma xenografts. Int J Cancer. 2008;123:2418–29.

    CAS  PubMed  Google Scholar 

  23. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    CAS  PubMed  Google Scholar 

  24. Yang S, Wu J, Zuo Y, Tan L, Jia H, Yan H, Zhu X, Zeng M, Ma J, Huang W. Zd6474, a small molecule tyrosine kinase inhibitor, potentiates the anti-tumor and anti-metastasis effects of radiation for human nasopharyngeal carcinoma. Curr Cancer Drug Targets. 2010;10:611–22.

    CAS  PubMed  Google Scholar 

  25. Choe MS, Zhang X, Shin HJ, Shin DM, Chen ZG. Interaction between epidermal growth factor receptor- and cyclooxygenase 2-mediated pathways and its implications for the chemoprevention of head and neck cancer. Mol Cancer Ther. 2005;4:1448–55.

    CAS  PubMed  Google Scholar 

  26. Yan J, Tsai SY, Tsai MJ. Src-3/AIB1. Transcriptional coactivator in oncogenesis. Acta Pharmacol Sin. 2006;27:387–94.

    PubMed  Google Scholar 

  27. Leung E, Kim JE, Rewcastle GW, Finlay GJ, Baguley BC. Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biol Ther. 2011;11:938–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arpino G, Wiechmann L, Osborne CK, Schiff R. Crosstalk between the estrogen receptor and the her tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev. 2008;29:217–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol. 2005;23:254–66.

    CAS  PubMed  Google Scholar 

  30. Garrido G, Tikhomirov IA, Rabasa A, Yang E, Gracia E, Iznaga N, Fernandez LE, Crombet T, Kerbel RS, Perez R. Bivalent binding by intermediate affinity of nimotuzumab: a contribution to explain antibody clinical profile. Cancer Biol Ther. 2011;11:373–82.

    CAS  PubMed  Google Scholar 

  31. Diaz Miqueli A, Rolff J, Lemm M, Fichtner I, Perez R, Montero E. Radiosensitisation of U87MG brain tumours by anti-epidermal growth factor receptor monoclonal antibodies. Br J Cancer. 2009;100:950–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Akashi Y, Okamoto I, Iwasa T, Yoshida T, Suzuki M, Hatashita E, Yamada Y, Satoh T, Fukuoka M, Ono K, Nakagawa K. Enhancement of the antitumor activity of ionising radiation by nimotuzumab, a humanised monoclonal antibody to the epidermal growth factor receptor, in non-small cell lung cancer cell lines of differing epidermal growth factor receptor status. Br J Cancer. 2008;98:749–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.

    CAS  PubMed  Google Scholar 

  34. Zhang X, Chen ZG, Choe MS, Lin Y, Sun SY, Wieand HS, Shin HJ, Chen A, Khuri FR, Shin DM. Tumor growth inhibition by simultaneously blocking epidermal growth factor receptor and cyclooxygenase-2 in a xenograft model. Clin Cancer Res. 2005;11:6261–9.

    CAS  PubMed  Google Scholar 

  35. Zannoni GF, Prisco MG, Vellone VG, De Stefano I, Scambia G, Gallo D. Changes in the expression of oestrogen receptors and E-cadherin as molecular markers of progression from normal epithelium to invasive cancer in elderly patients with vulvar squamous cell carcinoma. Histopathology. 2011;58:265–75.

    PubMed  Google Scholar 

  36. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997;277:965–8.

    CAS  PubMed  Google Scholar 

  37. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM. Nuclear receptor coactivator actr is a novel histone acetyltransferase and forms a multimeric activation complex with p/caf and cbp/p300. Cell. 1997;90:569–80.

    CAS  PubMed  Google Scholar 

  38. List HJ, Reiter R, Singh B, Wellstein A, Riegel AT. Expression of the nuclear coactivator AIB1 in normal and malignant breast tissue. Breast Cancer Res Treat. 2001;68:21–8.

    CAS  PubMed  Google Scholar 

  39. Torres-Arzayus MI, Yuan J, DellaGatta JL, Lane H, Kung AL, Brown M. Targeting the AIB1 oncogene through mammalian target of rapamycin inhibition in the mammary gland. Cancer Res. 2006;66:11381–8.

    CAS  PubMed  Google Scholar 

  40. Chinnaiyan P, Huang S, Vallabhaneni G, Armstrong E, Varambally S, Tomlins SA, Chinnaiyan AM, Harari PM. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res. 2005;65:3328–35.

    CAS  PubMed  Google Scholar 

  41. Resnitzky D, Gossen M, Bujard H, Reed SI. Acceleration of the G1/S phase transition by expression of cyclins d1 and e with an inducible system. Mol Cell Biol. 1994;14:1669–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Patel MI, Subbaramaiah K, Du B, Chang M, Yang P, Newman RA, Cordon-Cardo C, Thaler HT, Dannenberg AJ. Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism. Clin Cancer Res. 2005;11:1999–2007.

    CAS  PubMed  Google Scholar 

  43. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994;78:59–66.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Lei Zhao for his valuable comments during the conception of this study. In addition, we gratefully acknowledge the study support provided by Dr Hai-Bo Xue. Funding for this work was obtained from Binzhou Medical University Foundation.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Xue Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YX., Gao, JX., Wang, XY. et al. Antiproliferative effects of selective cyclooxygenase-2 inhibitor modulated by nimotuzumab in estrogen-dependent breast cancer cells. Tumor Biol. 33, 957–966 (2012). https://doi.org/10.1007/s13277-012-0324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0324-4

Keywords

Navigation