Advertisement

Tumor Biology

, Volume 33, Issue 3, pp 885–890 | Cite as

mTORC1 inhibition and ECM–cell adhesion-independent drug resistance via PI3K–AKT and PI3K–RAS–MAPK feedback loops

Research Article

Abstract

Mammalian target of rapamycin (mTOR) serine threonine kinase is the enzyme that regulates cancer cell growth by altering nutrient supplies to cancer cells. The neuropeptide (proline-rich peptide 1 (PRP-1)), galarmin, produced by the brain neurosecretory cells is a mTOR kinase inhibitor with powerful 80% antiproliferative cytostatic effect in a high-grade chondosarcoma and other mesenchymal tumors. However, the negative feedback loop of phosphatidylinositol 3 kinase–Protein kinase B (PKB), PI3K–AKT and PI3K–rat sarcoma (RAS)–mitogen-activated protein kinase (MAPK) activation is well documented for mTOR inhibitors. This study explored the involvement of those loops in drug resistance after the treatment with mTOR complex 1 (mTORC1) inhibitor, PRP-1. Multidrug resistance assay (MDR) demonstrated that this cytokine did not inhibit permeability glycoprotein-mediated MDR in chondrosarcoma. Phospho-MAPK array in human chondrosarcoma cell line treated with galarmin (10 μg/ml,) showed a strong upregulation of phosphorylated glycogen synthase kinase 3β (GSK3β) via activation of PI3K–AKT and MAPK feedback loops. Such GSK3β inactivation leads to β-catenin accumulation that entails drug resistance. The ability of cells to metastasize is reflected in their capacity to adhere to extracellular matrix and endothelium. Laminin cell adhesion assay demonstrated that PRP-1 in the same concentrations that inhibit mTOR kinase inhibited JJ012 chondrosarcoma cell adhesion. The neuropeptide did not have any effect on the expression of total focal adhesion kinase and its phosphorylated form. Thus, it was not accompanied by total HAT downregulation and total HDAC upregulation. Combinatorial treatments of PRP-1 with MAPK and PI3K/AKT inhibitors most probably will lead to full cytotoxicity overcoming drug resistance.

Keywords

Chondrosarcoma mTORC1 Multidrug resistance ECM–cell adhesion 

Notes

Acknowledgment

This study was supported by the Research Account of the University of Miami, Miller School of Medicine Tissue Bank.

References

  1. 1.
    Carracedo A, Baselga J, Pandolfi PP. Deconstructing feedback-signaling networks to improve anticancer therapy with mTORC1 inhibitors. Cell Cycle. 2008;7(24):3805–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065–74.PubMedGoogle Scholar
  3. 3.
    O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Grant S. Cotargeting survival signaling pathways in cancer. J Clin Invest. 2008;118(9):3003–6.PubMedGoogle Scholar
  5. 5.
    Galoyan AA. Neurochemistry of brain neuroendocrine immune system: signal molecules. Neurochem Res. 2000;25(9/10):1343–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Galoian K, Scully S, Galoyan A. Myc-oncogene inactivating effect by proline-rich polypeptide 1 (PRP-1) in chondrosarcoma JJ012 cells. Neurochem Res. 2009;34(2):379–85.PubMedCrossRefGoogle Scholar
  7. 7.
    Galoian K, Scully S, McNamara G, Flynn P, Galoyan A. Antitumorigenic effect of brain proline-rich polypeptide 1 in human chondrosarcoma. Neurochem Res Neurochem Res. 2009;34(12):2117–21.Google Scholar
  8. 8.
    Galoian K. Temple T.H, Galoyan A. Cytostatic effect of the hypothalamic cytokine PRP-1 is mediated by mTOR and cMyc inhibition in high-grade chondrosarcoma. Neurochem Res. 2011;36:812–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Galoian KA, Temple TH, Galoyan A. Cytostatic effect of novel mTOR inhibitor, PRP-1 (galarmin) in MDA 231 (ER-) breast carcinoma cell line. PRP-1 inhibits mesenchymal tumors. Tumour Biol. 2011;32(4):745–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas Parsons J, Slack-Davis J, Tilghman R, Gregory Roberts W. Focal adhesion kinase: targeting adhesion signaling pathways for therapeutic intervention. Clin Cancer Res. 2008;627:1–14.Google Scholar
  11. 11.
    West KA, Castillo SS, Dennis PA. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat. 2002;5:234–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Nobili S, Landini I, Mazzei T, Mini E. Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression. Med Res Rev. 2011. doi: 10.1002/med.20239.
  13. 13.
    Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M. Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science. 2008;320(5876):667–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Zoubeidi A, Zardan A, Wiedmann RM, Locke J, Beraldi E, Fazli L, Gleave ME. Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD. Cancer Res. 2010;70:2307.PubMedCrossRefGoogle Scholar
  15. 15.
    Shimamura A, Ballif BA, Richards SA, Blenis J. RSK1 mediates a MEK–MAP kinase cell survival signal. Curr Biol. 2000;10(3):127–35. 1.PubMedCrossRefGoogle Scholar
  16. 16.
    Sakamoto KM, Frank DA. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res. 2009;15:2583.PubMedCrossRefGoogle Scholar
  17. 17.
    Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M. Cross-talk between AKT, p53, and MDM2: possible implications for the regulation of apoptosis. Oncogene. 2002;21(8):1299–303.PubMedCrossRefGoogle Scholar
  18. 18.
    Alao JP, Stavropoulou AV, Lam EW-F, Charles Coombes R. Role of glycogen synthase kinase 3 beta (GSK3β) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA) in MCF-7 breast cancer cells. Mol Cancer. 2006;5:40.PubMedCrossRefGoogle Scholar
  19. 19.
    Walkinshaw DR, Yang XJ. Histone deacetylase inhibitors as novel anticancer therapeutics. Curr Oncol. 2008;15(5):237–43.PubMedGoogle Scholar
  20. 20.
    Ribeiro MSJ, Hansson ML, Lindberg MJ, Popko-Ścibor AE, Wallberg AE. GSK3β is a negative regulator of the transcriptional coactivator MAML1. Nucl Acids Res. 2009;37(20):6691–700.CrossRefGoogle Scholar
  21. 21.
    Choy E, Hornicek FJ, Wood KB, Schwab JH, Liu X, Mankin H, Duan Z. Histone deacetylase inhibitor PCI-24781 enhances chemotherapy-induced apoptosis in multidrug-resistant sarcoma cell lines. Anticancer Res. 2011;31(4):1115–23.PubMedGoogle Scholar
  22. 22.
    Ma WW, Adjei AA. Novel agents on the horizon for cancer therapy. CA Cancer J Clin. 2009;59:111–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Yu C, Friday BB, Lai JP, McCollum A, Atadja P, Roberts LR, Adjei AA. Abrogation of MAPK and AKT signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin Cancer Res. 2007;13(4):1140–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Müller-Brüsselbach S. O G Ottmann, J Duyster, A Hochhaus, A Neubauer. Chronic myeloid leukemia, BCR QBL studies QND. Myeloproliferative disorders. Compensatory PI3-kinase/AKT/mTor activation regulates imatinib resistance development. Leukemia. 2007;19:1774–82.CrossRefGoogle Scholar
  25. 25.
    Schwab J, Antonescu C, Boland P, Healey J, Rosenberg A, Nielsen P, Iafrate J, Delaney T, Yoon S, Choy E, Harmon D, Raskin K, Yang C, Mankin H, Springfield D, Hornicek F, Duan Z. Combination of PI3K/mTOR inhibition demonstrates efficacy in human chordoma. Anticancer Res. 2009;29(6):1867–71.PubMedGoogle Scholar
  26. 26.
    López-Fauqued M, Gil R, Grueso J, Hernandez-Losa J, Pujol A, Moliné T, Recio JA. The dual PI3K/mTOR inhibitor PI-103 promotes immunosuppression in vivo tumor growth and increases survival of sorafenib-treated melanoma cells. Int J Cancer. 2010;126(7):1549–61.PubMedGoogle Scholar
  27. 27.
    Woodward JKL, Rennie IG, Elshaw SR, Burnand JL, Sisley K. Invasive and noninvasive uveal melanomas have different adhesive properties. Eye. 2005;19:342–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Bergin E, Levine JS, Koh JS, Lieberthal W. Mouse proximal tubular cell–cell adhesion inhibits apoptosis by a cadherin-dependent mechanism. A/J Physiol Renal Physiol. 2000;278:F758–68.Google Scholar
  29. 29.
    Turner S, Sherratt JA. Intercellular adhesion and cancer invasion: a discrete simulation using the extended potts model. J Theor Biol. 2002;216:85–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L, Aukhil I, Juliano RL. Integrin-mediated Activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol. 1997;136(6):1385–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93(5):1658–67.PubMedGoogle Scholar
  32. 32.
    Bozzo C, Bellomo G, Silengo L, Tarone G, Altruda F. Soluble integrin ligands and growth factors independently rescue neuroblastoma cells from apoptosis under nonadherent conditions. Exp Cell Res. 1997;237(2):326–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Cordes N, van Beuningen D. Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase 3 beta (GSK3β) in vitro. May 6, 2003;88(9):1470–1479.Google Scholar
  34. 34.
    Huanwen W, Zhiyong L, Xiaohua S, Xinyu R, Kai W, Tonghua L. Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol Cancer. 2009;8:125. 21.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2012

Authors and Affiliations

  1. 1.Miller School of MedicineUniversity of Miami Health SystemMiamiUSA
  2. 2.Miller School of MedicineUniversity of Miami Health SystemMiamiUSA
  3. 3.Institute of BiochemistryYerevanArmenia

Personalised recommendations