Tumor Biology

, Volume 33, Issue 3, pp 787–798 | Cite as

Molecules involved in epithelial–mesenchymal transition and epithelial–stromal interaction in phyllodes tumors: implications for histologic grade and prognosis

  • Ji Eun Kwon
  • Woo-Hee Jung
  • Ja Seung Koo
Research Article


The aim of this study was to investigate the expression of molecules associated with epithelial–mesenchymal transition (EMT) and epithelial–stromal interactions (ESI) and to evaluate their roles in phyllodes tumors (PTs). Tissue microarrays (TMAs) were constructed from 207 PT specimens (157 benign, 34 borderline and 16 malignant). The presence of EMT-related markers including N-cadherin, Twist, TGF-beta, HMGA2, S100A4 and Ezrin as well as ESI-related molecules such as SDF1 and CXCR4 among the TMAs was assessed immunohistochemically. Immunohistochemical results were analyzed in terms of clinicopathologic parameters. For higher grade PTs, expressions of Twist (p < 0.001), HMGA2 (p = 0.005), S100A4 (p < 0.001), CXCR4 (p < 0.001) and TGF-beta (p < 0.001) were higher. As PTs showed higher stromal cellularity, higher stromal mitosis, stromal overgrowth and infiltrative tumor margin, the expressions of Twist, HMGA2 and CXCR4 in the stromal component thereof were increased (p < 0.05). High Twist expression in the stromal component was associated with shorter disease-free survival (DFS) and overall survival (OS) (p < 0.001) as well as shorter OS in multivariate COX analysis (p = 0.031, odds ratio: 24.6). In conclusion, the expressions of Twist, HMGA2, TGF-beta and S100A4, which are EMT-associated molecules, and CXCR4, an ESI-associated molecule, were increased in the stromal component of advanced grade PTs. Further, high expression of Twist in the stromal component was correlated with poorer prognoses.


Breast Phyllodes tumor Grade Twist 



This work was supported by a Yonsei University Research Fund of 2011.

Conflicts of interest



  1. 1.
    Tavassoli FADP. World Heath Organization classification of tumors. Pathogenesis and genetics of tumors of the breast and female genital tract. Lyon: IARC Press; 2003.Google Scholar
  2. 2.
    Anderson B, Lawton T, Lehman C, Moe R. Phyllodes tumor. In: Morrow M, Osborne C, editors. Disease of the breast. Philadelphia: Lippincott & Wilkins; 2004. p. 991–1006.Google Scholar
  3. 3.
    Ben Hassouna J, Damak T, Gamoudi A, Chargui R, Khomsi F, Mahjoub S, Slimene M, Ben Dhiab T, Hechiche M, Boussen H, Rahal K. Phyllodes tumors of the breast: a case series of 106 patients. Am J Surg. 2006;192(2):141–7. doi: 10.1016/j.amjsurg.2006.04.007.PubMedCrossRefGoogle Scholar
  4. 4.
    Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H. Clonal analysis of fibroadenoma and phyllodes tumor of the breast. Cancer Res. 1993;53(17):4071–4.PubMedGoogle Scholar
  5. 5.
    Sawyer EJ, Hanby AM, Ellis P, Lakhani SR, Ellis IO, Boyle S, Tomlinson IP. Molecular analysis of phyllodes tumors reveals distinct changes in the epithelial and stromal components. Am J Pathol. 2000;156(3):1093–8. doi: 10.1016/s0002-9440(10)64977-2.PubMedCrossRefGoogle Scholar
  6. 6.
    Duband JL, Monier F, Delannet M, Newgreen D. Epithelium–mesenchyme transition during neural crest development. Acta Anat (Basel). 1995;154(1):63–78.CrossRefGoogle Scholar
  7. 7.
    Kalluri R, Neilson EG. Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Investig. 2003;112(12):1776–84. doi: 10.1172/jci20530.PubMedGoogle Scholar
  8. 8.
    Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54. doi: 10.1038/nrc822.PubMedCrossRefGoogle Scholar
  9. 9.
    Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 1995;154(1):8–20.CrossRefGoogle Scholar
  10. 10.
    Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172(7):973–81. doi: 10.1083/jcb.200601018.PubMedCrossRefGoogle Scholar
  11. 11.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42. doi: 10.1038/nrm1835.PubMedCrossRefGoogle Scholar
  12. 12.
    Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, Thompson EW. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis. 2008;25(6):629–42. doi: 10.1007/s10585-008-9170-6.PubMedCrossRefGoogle Scholar
  13. 13.
    Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–97. doi: 10.1158/0008-5472.can-07-2017.PubMedCrossRefGoogle Scholar
  14. 14.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15. doi: 10.1016/j.cell.2008.03.027.PubMedCrossRefGoogle Scholar
  15. 15.
    Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS One. 2008;3(8):e2888. doi: 10.1371/journal.pone.0002888.PubMedCrossRefGoogle Scholar
  16. 16.
    Debies MT, Gestl SA, Mathers JL, Mikse OR, Leonard TL, Moody SE, Chodosh LA, Cardiff RD, Gunther EJ. Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16 Ink4a loss. J Clin Investig. 2008;118(1):51–63. doi: 10.1172/jci33320.PubMedCrossRefGoogle Scholar
  17. 17.
    Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD, Chodosh LA. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 2005;8(3):197–209. doi: 10.1016/j.ccr.2005.07.009.PubMedCrossRefGoogle Scholar
  18. 18.
    Yu L, Lu S, Tian J, Ma J, Li J, Wang H, Xu W. TWIST expression in hypopharyngeal cancer and the mechanism of TWIST-induced promotion of metastasis. Oncol Rep. 2011. doi: 10.3892/or.2011.1481.
  19. 19.
    Yuen HF, Chan YP, Wong ML, Kwok WK, Chan KK, Lee PY, Srivastava G, Law SY, Wong YC, Wang X, Chan KW. Upregulation of Twist in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis. J Clin Pathol. 2007;60(5):510–4. doi: 10.1136/jcp.2006.039099.PubMedCrossRefGoogle Scholar
  20. 20.
    Hristov AC, Cope L, Reyes MD, Singh M, Iacobuzio-Donahue C, Maitra A, Resar LM. HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Mod Pathol. 2009;22(1):43–9. doi: 10.1038/modpathol.2008.140.PubMedCrossRefGoogle Scholar
  21. 21.
    Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, Dinulescu DM, Lengyel E, Peter ME. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle. 2007;6(21):2585–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, Wei JJ. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res. 2008;6(4):663–73. doi: 10.1158/1541-7786.mcr-07-0370.PubMedCrossRefGoogle Scholar
  23. 23.
    Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A. 2007;104(27):11400–5. doi: 10.1073/pnas.0704372104.PubMedCrossRefGoogle Scholar
  24. 24.
    Xue C, Plieth D, Venkov C, Xu C, Neilson EG. The gatekeeper effect of epithelial–mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res. 2003;63(12):3386–94.PubMedGoogle Scholar
  25. 25.
    Yonemura Y, Endou Y, Kimura K, Fushida S, Bandou E, Taniguchi K, Kinoshita K, Ninomiya I, Sugiyama K, Heizmann CW, Schafer BW, Sasaki T. Inverse expression of S100A4 and E-cadherin is associated with metastatic potential in gastric cancer. Clin Cancer Res. 2000;6(11):4234–42.PubMedGoogle Scholar
  26. 26.
    Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35. doi: 10.1242/jcs.000455.PubMedCrossRefGoogle Scholar
  27. 27.
    Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med. 2004;10(5):201–4. doi: 10.1016/j.molmed.2004.03.001.PubMedCrossRefGoogle Scholar
  28. 28.
    Okamura D, Ohtsuka M, Kimura F, Shimizu H, Yoshidome H, Kato A, Miyazaki M. Ezrin expression is associated with hepatocellular carcinoma possibly derived from progenitor cells and early recurrence after surgical resection. Mod Pathol. 2008;21(7):847–55. doi: 10.1038/modpathol.2008.59.PubMedCrossRefGoogle Scholar
  29. 29.
    Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60(6):273–6. doi: 10.1016/j.biopha.2006.06.004.PubMedCrossRefGoogle Scholar
  30. 30.
    Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ. CXCR4–SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol. 2004;35(3):233–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Kang Y, Massague J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell. 2004;118(3):277–9. doi: 10.1016/j.cell.2004.07.011.PubMedCrossRefGoogle Scholar
  32. 32.
    Huang KT, Dobrovic A, Yan M, Karim RZ, Lee CS, Lakhani SR, Fox SB. DNA methylation profiling of phyllodes and fibroadenoma tumours of the breast. Breast Cancer Res Treat. 2010;124(2):555–65. doi: 10.1007/s10549-010-0970-4.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim JH, Choi YD, Lee JS, Lee JH, Nam JH, Choi C, Park MH, Yoon JH. Borderline and malignant phyllodes tumors display similar promoter methylation profiles. Virchows Arch. 2009;455(6):469–75. doi: 10.1007/s00428-009-0858-z.PubMedCrossRefGoogle Scholar
  34. 34.
    Gort EH, Suijkerbuijk KP, Roothaan SM, Raman V, Vooijs M, van der Wall E, van Diest PJ. Methylation of the TWIST1 promoter, TWIST1 mRNA levels, and immunohistochemical expression of TWIST1 in breast cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(12):3325–30. doi: 10.1158/1055-9965.epi-08-0472.PubMedCrossRefGoogle Scholar
  35. 35.
    Gomez I, Pena C, Herrera M, Munoz C, Larriba MJ, Garcia V, Dominguez G, Silva J, Rodriguez R, Garcia de Herreros A, Bonilla F, Garcia JM. TWIST1 is expressed in colorectal carcinomas and predicts patient survival. PLoS One. 2011;6(3):e18023. doi: 10.1371/journal.pone.0018023.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, Wong YC, Guan XY, Man K, Chau KL, Fan ST. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial–mesenchymal transition. Clin Cancer Res. 2006;12(18):5369–76. doi: 10.1158/1078-0432.ccr-05-2722.PubMedCrossRefGoogle Scholar
  37. 37.
    Sasaki K, Natsugoe S, Ishigami S, Matsumoto M, Okumura H, Setoyama T, Uchikado Y, Kita Y, Tamotsu K, Sakamoto A, Owaki T, Aikou T. Significance of Twist expression and its association with E-cadherin in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2009;28:158. doi: 10.1186/1756-9966-28-158.PubMedCrossRefGoogle Scholar
  38. 38.
    Shibata K, Kajiyama H, Ino K, Terauchi M, Yamamoto E, Nawa A, Nomura S, Kikkawa F. Twist expression in patients with cervical cancer is associated with poor disease outcome. Ann Oncol. 2008;19(1):81–5. doi: 10.1093/annonc/mdm344.PubMedCrossRefGoogle Scholar
  39. 39.
    Valdes-Mora F, Gomez del Pulgar T, Bandres E, Cejas P, Ramirez de Molina A, Perez-Palacios R, Gallego-Ortega D, Garcia-Cabezas MA, Casado E, Larrauri J, Nistal M, Gonzalez-Baron M, Garcia-Foncillas J, Lacal JC. TWIST1 overexpression is associated with nodal invasion and male sex in primary colorectal cancer. Ann Surg Oncol. 2009;16(1):78–87. doi: 10.1245/s10434-008-0166-x.PubMedCrossRefGoogle Scholar
  40. 40.
    Yu Q, Zhang K, Wang X, Liu X, Zhang Z. Expression of transcription factors snail, slug, and twist in human bladder carcinoma. J Exp Clin Cancer Res. 2010;29:119. doi: 10.1186/1756-9966-29-119.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39. doi: 10.1016/j.cell.2004.06.006.PubMedCrossRefGoogle Scholar
  42. 42.
    Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 2005;65(14):5996–6000. doi: 10.1158/0008-5472.can-05-0699. discussion 6000-5991.PubMedCrossRefGoogle Scholar
  43. 43.
    Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 2005;65(14):5991–5. doi: 10.1158/0008-5472.can-05-0616. discussion 5995.PubMedCrossRefGoogle Scholar
  44. 44.
    Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, Doglioni C, Beach DH, Hannon GJ. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 1999;13(17):2207–17.PubMedCrossRefGoogle Scholar
  45. 45.
    Valsesia-Wittmann S, Magdeleine M, Dupasquier S, Garin E, Jallas AC, Combaret V, Krause A, Leissner P, Puisieux A. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell. 2004;6(6):625–30. doi: 10.1016/j.ccr.2004.09.033.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang Z, Zhang X, Gang H, Li X, Li Z, Wang T, Han J, Luo T, Wen F, Wu X. Up-regulation of gastric cancer cell invasion by Twist is accompanied by N-cadherin and fibronectin expression. Biochem Biophys Res Commun. 2007;358(3):925–30. doi: 10.1016/j.bbrc.2007.05.023.PubMedCrossRefGoogle Scholar
  47. 47.
    Karim RZ, Gerega SK, Yang YH, Horvath L, Spillane A, Carmalt H, Scolyer RA, Lee CS. Proteins from the Wnt pathway are involved in the pathogenesis and progression of mammary phyllodes tumours. J Clin Pathol. 2009;62(11):1016–20. doi: 10.1136/jcp.2009.066977.PubMedCrossRefGoogle Scholar
  48. 48.
    Bertran E, Caja L, Navarro E, Sancho P, Mainez J, Murillo MM, Vinyals A, Fabra A, Fabregat I. Role of CXCR4/SDF-1 alpha in the migratory phenotype of hepatoma cells that have undergone epithelial–mesenchymal transition in response to the transforming growth factor-beta. Cell Signal. 2009;21(11):1595–606. doi: 10.1016/j.cellsig.2009.06.006.PubMedCrossRefGoogle Scholar
  49. 49.
    Onoue T, Uchida D, Begum NM, Tomizuka Y, Yoshida H, Sato M. Epithelial–mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol. 2006;29(5):1133–8.PubMedGoogle Scholar
  50. 50.
    Taki M, Higashikawa K, Yoneda S, Ono S, Shigeishi H, Nagayama M, Kamata N. Up-regulation of stromal cell-derived factor-1alpha and its receptor CXCR4 expression accompanied with epithelial–mesenchymal transition in human oral squamous cell carcinoma. Oncol Rep. 2008;19(4):993–8.PubMedGoogle Scholar
  51. 51.
    Wang X, Liu X, Li AY, Chen L, Lai L, Lin HH, Hu S, Yao L, Peng J, Loera S, Xue L, Zhou B, Zhou L, Zheng S, Chu P, Zhang S, Ann DK, Yen Y. Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin Cancer Res. 2011;17(8):2570–80. doi: 10.1158/1078-0432.ccr-10-2542.PubMedCrossRefGoogle Scholar
  52. 52.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL, Mohar A, Verastegui E, Zlotnik A. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6. doi: 10.1038/35065016.PubMedCrossRefGoogle Scholar
  53. 53.
    Murakami T, Maki W, Cardones AR, Fang H, Tun Kyi A, Nestle FO, Hwang ST. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res. 2002;62(24):7328–34.PubMedGoogle Scholar
  54. 54.
    Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, Luker GD. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64(23):8604–12. doi: 10.1158/0008-5472.can-04-1844.PubMedCrossRefGoogle Scholar
  55. 55.
    Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.PubMedGoogle Scholar
  56. 56.
    Burger JA, Stewart DJ. CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs. 2009;18(4):481–90. doi: 10.1517/13543780902804249.PubMedCrossRefGoogle Scholar
  57. 57.
    Chu QD, Panu L, Holm NT, Li BD, Johnson LW, Zhang S. High chemokine receptor CXCR4 level in triple negative breast cancer specimens predicts poor clinical outcome. J Surg Res. 2010;159(2):689–95. doi: 10.1016/j.jss.2008.09.020.PubMedCrossRefGoogle Scholar
  58. 58.
    Darash-Yahana M, Pikarsky E, Abramovitch R, Zeira E, Pal B, Karplus R, Beider K, Avniel S, Kasem S, Galun E, Peled A. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 2004;18(11):1240–2. doi: 10.1096/fj.03-0935fje.PubMedGoogle Scholar
  59. 59.
    Meier R, Muhlethaler-Mottet A, Flahaut M, Coulon A, Fusco C, Louache F, Auderset K, Bourloud KB, Daudigeos E, Ruegg C, Vassal G, Gross N, Joseph JM. The chemokine receptor CXCR4 strongly promotes neuroblastoma primary tumour and metastatic growth, but not invasion. PLoS One. 2007;2(10):e1016. doi: 10.1371/journal.pone.0001016.PubMedCrossRefGoogle Scholar
  60. 60.
    Murakami T, Cardones AR, Hwang ST. Chemokine receptors and melanoma metastasis. J Dermatol Sci. 2004;36(2):71–8. doi: 10.1016/j.jdermsci.2004.03.002.PubMedCrossRefGoogle Scholar
  61. 61.
    Schimanski CC, Schwald S, Simiantonaki N, Jayasinghe C, Gonner U, Wilsberg V, Junginger T, Berger MR, Galle PR, Moehler M. Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res. 2005;11(5):1743–50. doi: 10.1158/1078-0432.ccr-04-1195.PubMedCrossRefGoogle Scholar
  62. 62.
    Laverdiere C, Hoang BH, Yang R, Sowers R, Qin J, Meyers PA, Huvos AG, Healey JH, Gorlick R. Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res. 2005;11(7):2561–7. doi: 10.1158/1078-0432.ccr-04-1089.PubMedCrossRefGoogle Scholar
  63. 63.
    Diomedi-Camassei F, McDowell HP, De Ioris MA, Uccini S, Altavista P, Raschella G, Vitali R, Mannarino O, De Sio L, Cozzi DA, Donfrancesco A, Inserra A, Callea F, Dominici C. Clinical significance of CXC chemokine receptor-4 and c-Met in childhood rhabdomyosarcoma. Clin Cancer Res. 2008;14(13):4119–27. doi: 10.1158/1078-0432.ccr-07-4446.PubMedCrossRefGoogle Scholar
  64. 64.
    Libura J, Drukala J, Majka M, Tomescu O, Navenot JM, Kucia M, Marquez L, Peiper SC, Barr FG, Janowska-Wieczorek A, Ratajczak MZ. CXCR4–SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood. 2002;100(7):2597–606. doi: 10.1182/blood-2002-01-0031.PubMedCrossRefGoogle Scholar
  65. 65.
    Strahm B, Durbin AD, Sexsmith E, Malkin D. The CXCR4–SDF1alpha axis is a critical mediator of rhabdomyosarcoma metastatic signaling induced by bone marrow stroma. Clin Exp Metastasis. 2008;25(1):1–10. doi: 10.1007/s10585-007-9094-6.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  1. 1.Department of PathologyInje University Sanggye Paik HospitalSeoulSouth Korea
  2. 2.Brain Korea 21 Project for Medical SciencesYonsei University College of MedicineSeoulSouth Korea
  3. 3.Department of PathologyYonsei University College of Medicine, Severance HospitalSeoulSouth Korea

Personalised recommendations