Tumor Biology

, Volume 33, Issue 3, pp 723–730 | Cite as

Ubiquitin-conjugating enzyme UBE2C: molecular biology, role in tumorigenesis, and potential as a biomarker

  • Zhonglin HaoEmail author
  • Hui Zhang
  • John Cowell


Ubiquitin-conjugating enzyme 2C (UBE2C) participates in cell cycle progression and checkpoint control by targeted degradation of short-lived proteins. As a conjugating enzyme, it directs polyubiquitination to preferred lysine in the substrates. In addition to its well-known role in cyclin B destruction that is essential for exit from mitosis, UBE2C also plays an important role in mitotic spindle checkpoint control. Cells overexpressing UBE2C ignore the mitotic spindle checkpoint signals and lose genomic stability, which is a hallmark of cancer. UBE2C expression is upregulated upon malignant transformation, and amplification of UBE2C is often seen at the chromosome level in cancers in a manner similar to c-Myc, which is directly upstream of UBE2C. UBE2C levels are upregulated in a wide range of solid tumors and hematological malignancies. The level of expression correlates with the aggressiveness of the tumor. High UBE2C expression is predictive of poor survival and perhaps high risk for relapse. UBE2C immunochemistry may be integrated into the diagnosis of thyroid malignancy and gliomas. This minireview summarizes what is known about the function of UBE2C focusing on its role in the regulation of spindle assembly checkpoint, its part in tumorigenesis, and its potential as a tumor marker for various cancers.


UBE2C Genomic instability Checkpoint Cancer Prognosis 


Conflicts of interest



  1. 1.
    Jesenberger V, Jentsch S. Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol. 2002;3(2):112–21.PubMedCrossRefGoogle Scholar
  2. 2.
    Williamson A, Wickliffe KE, Mellone BG, Song L, Karpen GH, Rape M. Identification of a physiological E2 module for the human anaphase-promoting complex. Proc Natl Acad Sci USA. 2009;106(43):18213–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 2006;22:159–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu YC. Ubiquitin ligases and the immune response. Annu Rev Immunol. 2004;22:81–127.PubMedCrossRefGoogle Scholar
  5. 5.
    Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem. 2010;147(6):793–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Hicke L, Schubert HL, Hill CP. Ubiquitin-binding domains. Nat Rev Mol Cell Biol. 2005;6(8):610–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature. 2007;446(7138):876–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Reddy SK, Rape M, Margansky WA, Kirschner MW. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature. 2007;446(7138):921–5.PubMedCrossRefGoogle Scholar
  9. 9.
    van Ree JH, Jeganathan KB, Malureanu L, van Deursen JM. Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol. 2010;188(1):83–100.PubMedCrossRefGoogle Scholar
  10. 10.
    Townsley FM, Aristarkhov A, Beck S, Hershko A, Ruderman JV. Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. Proc Natl Acad Sci USA. 1997;94(6):2362–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim S, Yu H. Mutual regulation between the spindle checkpoint and APC/C. Semin Cell Dev Biol. 2011;22(6):551–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Nath S, Banerjee T, Sen D, Das T, Roychoudhury S. Spindle assembly checkpoint protein Cdc20 transcriptionally activates expression of ubiquitin carrier protein UbcH10. J Biol Chem. 2011;286(18):15666–77.PubMedCrossRefGoogle Scholar
  13. 13.
    Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009;81(11):4493–501.PubMedCrossRefGoogle Scholar
  14. 14.
    Rape M, Kirschner MW. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature. 2004;432(7017):588–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell. 2008;133(4):653–65.PubMedCrossRefGoogle Scholar
  16. 16.
    David Y, Ziv T, Admon A, Navon A. The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J Biol Chem. 2010;285(12):8595–604.PubMedCrossRefGoogle Scholar
  17. 17.
    Nasmyth K. How do so few control so many? Cell. 2005;120(6):739–46.PubMedCrossRefGoogle Scholar
  18. 18.
    Yanagida M. Basic mechanism of eukaryotic chromosome segregation. Philos Trans R Soc Lond B Biol Sci. 2005;360(1455):609–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Fang G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell. 2002;13(3):755–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell. 2011;144(5):769–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Murray AW. Recycling the cell cycle: cyclins revisited. Cell. 2004;116(2):221–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 2000;10(10):429–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Jiang F, Basavappa R. Crystal structure of the cyclin-specific ubiquitin-conjugating enzyme from clam, E2-C, at 2.0 A resolution. Biochemistry. 1999;38(20):6471–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Lin Y, Hwang WC, Basavappa R. Structural and functional analysis of the human mitotic-specific ubiquitin-conjugating enzyme, UbcH10. J Biol Chem. 2002;277(24):21913–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Summers MK, Pan B, Mukhyala K, Jackson PK. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell. 2008;31(4):544–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Okamoto Y, Ozaki T, Miyazaki K, Aoyama M, Miyazaki M, Nakagawara A. UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res. 2003;63(14):4167–73.PubMedGoogle Scholar
  27. 27.
    May WA, Arvand A, Thompson AD, Braun BS, Wright M, Denny CT. EWS/FLI1-induced manic fringe renders NIH 3T3 cells tumorigenic. Nat Genet. 1997;17(4):495–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Sudbo J, Lippman SM, Lee JJ, Mao L, Kildal W, Sudbo A, et al. The influence of resection and aneuploidy on mortality in oral leukoplakia. N Engl J Med. 2004;350(14):1405–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Kadara H, Behrens C, Yuan P, Solis L, Liu D, Gu X, et al. A five-gene and corresponding protein signature for stage-I lung adenocarcinoma prognosis. Clin Cancer Res. 2011;17(6):1490–501.PubMedCrossRefGoogle Scholar
  31. 31.
    Hunter KD, Thurlow JK, Fleming J, Drake PJ, Vass JK, Kalna G, et al. Divergent routes to oral cancer. Cancer Res. 2006;66(15):7405–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Patel D, McCance DJ. Compromised spindle assembly checkpoint due to altered expression of Ubch10 and Cdc20 in human papillomavirus type 16 E6- and E7-expressing keratinocytes. J Virol. 2010;84(21):10956–64.PubMedCrossRefGoogle Scholar
  33. 33.
    Wagner KW, Sapinoso LM, El-Rifai W, Frierson HF, Butz N, Mestan J, et al. Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene. 2004;23(39):6621–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Berlingieri MT, Pallante P, Sboner A, Barbareschi M, Bianco M, Ferraro A, et al. UbcH10 is overexpressed in malignant breast carcinomas. Eur J Cancer. 2007;43(18):2729–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Loussouarn D, Campion L, Leclair F, Campone M, Charbonnel C, Ricolleau G, et al. Validation of UBE2C protein as a prognostic marker in node-positive breast cancer. Br J Cancer. 2009;101(1):166–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Berlingieri MT, Pallante P, Guida M, Nappi C, Masciullo V, Scambia G, et al. UbcH10 expression may be a useful tool in the prognosis of ovarian carcinomas. Oncogene. 2007;26(14):2136–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen S, Chen Y, Hu C, Jing H, Cao Y, Liu X. Association of clinicopathological features with UbcH10 expression in colorectal cancer. J Cancer Res Clin Oncol. 2010;136(3):419–26.PubMedCrossRefGoogle Scholar
  38. 38.
    Ieta K, Ojima E, Tanaka F, Nakamura Y, Haraguchi N, Mimori K, et al. Identification of overexpressed genes in hepatocellular carcinoma, with special reference to ubiquitin-conjugating enzyme E2C gene expression. Int J Cancer. 2007;121(1):33–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Pallante P, Berlingieri MT, Troncone G, Kruhoffer M, Orntoft TF, Viglietto G, et al. UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas. Br J Cancer. 2005;93(4):464–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Jiang L, Huang CG, Lu YC, Luo C, Hu GH, Liu HM, et al. Expression of ubiquitin-conjugating enzyme E2C/UbcH10 in astrocytic tumors. Brain Res. 2008;1201:161–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J, et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009;138(2):245–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen Z, Zhang C, Wu D, Chen H, Rorick A, Zhang X, et al. Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO J. 2011;30(12):2405–19.PubMedCrossRefGoogle Scholar
  43. 43.
    Garnis C, Coe BP, Lam SL, MacAulay C, Lam WL. High-resolution array CGH increases heterogeneity tolerance in the analysis of clinical samples. Genomics. 2005;85(6):790–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Prochownik EV. c-Myc: linking transformation and genomic instability. Curr Mol Med. 2008;8(6):446–58.PubMedCrossRefGoogle Scholar
  45. 45.
    Troncone G, Guerriero E, Pallante P, Berlingieri MT, Ferraro A, Del Vecchio L, et al. UbcH10 expression in human lymphomas. Histopathology. 2009;54(6):731–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Cunha IW, Carvalho KC, Martins WK, Marques SM, Muto NH, Falzoni R, et al. Identification of genes associated with local aggressiveness and metastatic behavior in soft tissue tumors. Transl Oncol. 2010;3(1):23–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Takahashi Y, Ishii Y, Nishida Y, Ikarashi M, Nagata T, Nakamura T, et al. Detection of aberrations of ubiquitin-conjugating enzyme E2C gene (UBE2C) in advanced colon cancer with liver metastases by DNA microarray and two-color FISH. Cancer Genet Cytogenet. 2006;168(1):30–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Guerriero E, Ferraro A, Desiderio D, Pallante P, Berlingieri MT, Iaccarino A, et al. UbcH10 expression on thyroid fine-needle aspirates. Cancer Cytopathol. 2010;118(3):157–65.PubMedCrossRefGoogle Scholar
  49. 49.
    Donato G, Iofrida G, Lavano A, Volpentesta G, Signorelli F, Pallante PL, et al. Analysis of UbcH10 expression represents a useful tool for the diagnosis and therapy of astrocytic tumors. Clin Neuropathol. 2008;27(4):219–23.PubMedGoogle Scholar
  50. 50.
    Karadag YS, Karadag O, Cicekli E, Ozturk S, Kiraz S, Ozbakir S, et al. Severity of carpal tunnel syndrome assessed with high frequency ultrasonography. Rheumatol Int. 2010;30(6):761–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Campone M, Campion L, Roche H, Gouraud W, Charbonnel C, Magrangeas F, et al. Prediction of metastatic relapse in node-positive breast cancer: establishment of a clinicogenomic model after FEC100 adjuvant regimen. Breast Cancer Res Treat. 2008;109(3):491–501.PubMedCrossRefGoogle Scholar
  52. 52.
    Taylor KJ, Sims AH, Liang L, Faratian D, Muir M, Walker G, et al. Dynamic changes in gene expression in vivo predict prognosis of tamoxifen-treated patients with breast cancer. Breast Cancer Res. 2010;12(3):R39.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang H, Zhang C, Rorick A, Wu D, Chiu M, Thomas-Ahner J, et al. CCI-779 inhibits cell-cycle G2-M progression and invasion of castration-resistant prostate cancer via attenuation of UBE2C transcription and mRNA stability. Cancer Res. 2011;71(14):4866–76.PubMedCrossRefGoogle Scholar
  54. 54.
    Zirn B, Samans B, Spangenberg C, Graf N, Eilers M, Gessler M. All-trans retinoic acid treatment of Wilms tumor cells reverses expression of genes associated with high risk and relapse in vivo. Oncogene. 2005;24(33):5246–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Bavi P, Uddin S, Ahmed M, Jehan Z, Bu R, Abubaker J, et al. Bortezomib stabilizes mitotic cyclins and prevents cell cycle progression via inhibition of UBE2C in colorectal carcinoma. Am J Pathol. 2011;178(5):2109–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee EA, Keutmann MK, Dowling ML, Harris E, Chan G, Kao GD. Inactivation of the mitotic checkpoint as a determinant of the efficacy of microtubule-targeted drugs in killing human cancer cells. Mol Cancer Ther. 2004;3(6):661–9.PubMedGoogle Scholar
  57. 57.
    Laurell C, Velazquez-Fernandez D, Lindsten K, Juhlin C, Enberg U, Geli J, et al. Transcriptional profiling enables molecular classification of adrenocortical tumours. Eur J Endocrinol. 2009;161(1):141–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Fevre-Montange M, Champier J, Durand A, Wierinckx A, Honnorat J, Guyotat J, et al. Microarray gene expression profiling in meningiomas: differential expression according to grade or histopathological subtype. Int J Oncol. 2009;35(6):1395–407.PubMedCrossRefGoogle Scholar
  59. 59.
    Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res. 2005;65(19):8679–89.PubMedCrossRefGoogle Scholar
  60. 60.
    Kamalakaran S, Varadan V, Giercksky Russnes HE, Levy D, Kendall J, Janevski A, et al. DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables. Mol Oncol. 2011;5(1):77–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Parris TZ, Danielsson A, Nemes S, Kovacs A, Delle U, Fallenius G, et al. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res. 2010;16(15):3860–74.PubMedCrossRefGoogle Scholar
  62. 62.
    Chen CC, Chang TW, Chen FM, Hou MF, Hung SY, Chong IW, et al. Combination of multiple mRNA markers (PTTG1, Survivin, UbcH10 and TK1) in the diagnosis of Taiwanese patients with breast cancer by membrane array. Oncology. 2006;70(6):438–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Rajkumar T, Sabitha K, Vijayalakshmi N, Shirley S, Bose MV, Gopal G, et al. Identification and validation of genes involved in cervical tumourigenesis. BMC Cancer. 2011;11:80.PubMedCrossRefGoogle Scholar
  64. 64.
    Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer. 2007;46(4):373–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Sheffer M, Bacolod MD, Zuk O, Giardina SF, Pincas H, Barany F, et al. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer. Proc Natl Acad Sci USA. 2009;106(17):7131–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Lin J, Raoof DA, Wang Z, Lin MY, Thomas DG, Greenson JK, et al. Expression and effect of inhibition of the ubiquitin-conjugating enzyme E2C on esophageal adenocarcinoma. Neoplasia. 2006;8(12):1062–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Kadara H, Lacroix L, Behrens C, Solis L, Gu X, Lee JJ, et al. Identification of gene signatures and molecular markers for human lung cancer prognosis using an in vitro lung carcinogenesis system. Cancer Prev Res (Phila). 2009;2(8):702–11.CrossRefGoogle Scholar
  68. 68.
    Lee JJ, Au AY, Foukakis T, Barbaro M, Kiss N, Clifton-Bligh R, et al. Array-CGH identifies cyclin D1 and UBCH10 amplicons in anaplastic thyroid carcinoma. Endocr Relat Cancer. 2008;15(3):801–15.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  1. 1.Georgia Health Sciences University Cancer CenterGeorgia Health Sciences UniversityAugustaUSA
  2. 2.Division of Hematology and OncologyGeorgia Health Sciences UniversityAugustaUSA

Personalised recommendations