Skip to main content

Advertisement

Log in

Novel aspect of chemophototherapy in treatment of cancer

  • Review
  • Published:
Tumor Biology

Abstract

The present review deals with the genetic implications of reactive oxygen species (ROS) to enhance horizons of chemophototherapy toward novel approaches for the treatment of various cancers. ROS are species of oxygen which are in a more reactive state than molecular oxygen. ROS play essential roles in vivo such as redox regulation, gene expression, immune response and many other cellular events. ROS generated by anticancer drugs during chemophototherapy may be associated with the activation of signal molecules like PKC, transcription factor NF-kappaB as well as destabilization of mitochondrial membrane inducing the release of apoptosis inducing agents like cytochrome c, resulting in toxicity to cancer cells. Thus, we suggest that anticancer drugs on exposure to light may generate oxidative stress following Fenton-like reaction generating hydroxyl radical. This may get on specific cell cycle receptors which may lead to cell cycle arrest and subsequently cytotoxic death of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steiner U, Klein J, Eiser E, Budkowski A, Fetters LJ. Complete wetting from polymer mixtures. Science. 1992;25:1122–9.

    Google Scholar 

  2. Bauerschmidt C, Arrichiello C, Burdak-Rothkamm S, Woodcock M, Hill MA, Stevens DL, Rothkamm K. Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 2010;38:477–87.

    Article  PubMed  CAS  Google Scholar 

  3. Mendonca MS, Chin-Sinex H, Gomez-Millan J, Datzman N, Hardacre M, Comerford K, Nakshatri H, Nye M, Benjamin L, Mehta S, Patino F, Sweeney C. Parthenolide sensitizes cells to X-ray-induced cell killing through inhibition of NF-κB and split-dose repair. Radiat Res. 2007;168:689–97.

    Article  PubMed  CAS  Google Scholar 

  4. Tomita M. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death. J Radiat Res. 2010;51:493–501.

    Article  PubMed  CAS  Google Scholar 

  5. Renschle MF. The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer. 2004;40:1934–40.

    Article  Google Scholar 

  6. Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev. 2010;3:23–34.

    Article  PubMed  Google Scholar 

  7. Chiharu IK, Toshio S. Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol. 2011. doi:10.1002/jcp.22764.

  8. Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–50.

    Article  PubMed  CAS  Google Scholar 

  9. Conklin KA. Cancer chemotherapy and antioxidants. J Nutr. 2004;134:3201S–4.

    PubMed  CAS  Google Scholar 

  10. Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB’, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA. A genetically encoded photosensitizer. Nat Biotechnol. 2006;24:95–9.

    Article  PubMed  CAS  Google Scholar 

  11. Chibber S, Hassan I, Farhan M, Naseem I. In vitro prooxidant action of methotrexate in presence of white light. Photochem Photobiol B: Biol. 2011;104:387–93.

    Article  CAS  Google Scholar 

  12. Chibber S, Farhan M, Hassan I, Naseem I. White light-mediated Cu (II)-5FU interaction augments the chemotherapeutic potential of 5-FU: an in vitro study. Tumor Biol. 2011;32:881–92.

    Article  CAS  Google Scholar 

  13. Kazutaka H. Fluorometry of singlet oxygen generated via a photosensitized reaction using folic acid and methotrexate. Anal Bioanal Chem. 2002;393:999–1005.

    Google Scholar 

  14. Jaroslav C, Jiøí G, Jiøina M, Marie Š, Jaroslava V, Vìra K, Marie N. Pharmacokinetics and pharmacodynamics of low-dose methotrexate in the treatment of psoriasis. Br J Clin Pharmacol. 2002;54:147–56.

    Article  Google Scholar 

  15. Pascu ML, Brezeanu M, Voicu L, Staicu A, Carstocea B, Pascu RA. 5-Fluorouracil as a photosensitiser. in vivo. 2005;19:215–20.

    PubMed  Google Scholar 

  16. Hassan I, Chibber S, Naseem I. Ameliorative effect of riboflavin on the cisplatin induced nephrotoxicity and hepatotoxicity under photoillumination. Food Chem Toxicol. 2010;48:2052–8.

    Article  PubMed  CAS  Google Scholar 

  17. Saxton RE, Paiva MB, Lufkin RB, Castro DJ. Laser photochemotherapy: a less invasive approach for treatment of cancer. Semin Surg Oncol. 1995;11:283–9.

    Article  PubMed  CAS  Google Scholar 

  18. Duska LR, Hamblin MR, Miller JL, Hasan T. Combination photoimmunotherapy and cisplatin: effects on human ovarian cancer ex vivo. J Natl Cancer Inst. 1999;91:1557–63.

    Article  PubMed  CAS  Google Scholar 

  19. Skeel RT. Handbook of cancer chemotherapy. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2003. ISBN 0781736293.

    Google Scholar 

  20. Katherine LK, John LA, Jane CW, Elizabeth AC, Deborah S, John ZA, Catarina IK, Patricia AG, Nirmala B, Arnold LP, David PH, Robert HF. Adjuvant chemotherapy use and adverse events among older patients with stage III colon cancer. JAMA. 2010;303:1037–45.

    Article  Google Scholar 

  21. Bore C. Antioxidants and radiation therapy. J Nutr. 2004;134:3207S–9.

    Google Scholar 

  22. Wen-Hsiung CJ. Photodynamic treatment induces an apoptotic pathway involving calcium, nitric oxide, p53, p21-activated kinase 2, and c-Jun N-terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. Int J Mol Sci. 2011;12:1041–59.

    Article  Google Scholar 

  23. Al-Ejeh F, Kumar R, Wiegmans A, Lakhan SR, Brown MP, Khanna KK. Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene. 2010;29:6085–98.

    Article  PubMed  CAS  Google Scholar 

  24. Shao C, Folkard M, Held KD, Prise KM. Estrogen enhanced cell–cell signalling in breast cancer cells exposed to targeted irradiation. BMC Cancer. 2008;82:184.

    Article  Google Scholar 

  25. Pandey BN, Mishra KP. Role of membrane oxidative damage and reactive oxygen species in radiation induced apoptotic death in mouse thymocytes. Int J low rad. 2003;1:113–9.

    Article  CAS  Google Scholar 

  26. Maity A, McKenna WG, Muschel RJ. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 1994;31:1–13.

    Article  PubMed  CAS  Google Scholar 

  27. Bae YS, Sung JY, Kim OS, Kim YJ, Hur KC, Kazlauskas A. Platelet derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem. 2000;275:10527–31K.

    Article  PubMed  CAS  Google Scholar 

  28. Junn E, Lee KN, Ju HR, Han SH, Im JY, Kang HS. Requirement of hydrogen peroxide generation in TGF-beta 1 signal transduction in human lung fibroblast cells: involvement of hydrogen peroxide and Ca2+ in TGF beta 1-induced IL-6 expression. J Immunol. 2000;165:2190–7.

    PubMed  CAS  Google Scholar 

  29. Howes RM. Hydrogen peroxide: a review of a scientifically verifiable omnipresent ubiquitous essentiality of obligate, aerobic, carbon-based life forms. Int J Plastic Surg. 2010;7(1).

  30. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet derived growth factor signal transduction. Science. 1995;270:296–9.

    Article  PubMed  CAS  Google Scholar 

  31. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997;272:217–21.

    Article  PubMed  CAS  Google Scholar 

  32. Groen A, Lemeer S, Van der Wijk T, Overvoorde J, Heck AJ, Ostman A, Barford D, Slijper M, Den Hertog J. Differential oxidation of protein-tyrosine phosphatases. J Biol Chem. 2005;280:10298–304.

    Article  PubMed  CAS  Google Scholar 

  33. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI3-kinase signaling via inactivation of PTEN. EMBO J. 2003;22:5501–10.

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, McCullough KD, Franke TF, Holbrook NJ. Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem. 2000;275:14624–31.

    Article  PubMed  CAS  Google Scholar 

  35. Benhar M, Engelberg D, Levitzki A. ROS, stress activated kinases and stress signaling in cancer. EMBO Rep. 2002;3:420–5.

    Article  PubMed  CAS  Google Scholar 

  36. Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst. 2000;92:143–7.

    Article  PubMed  CAS  Google Scholar 

  37. Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3:294–300.

    Article  PubMed  CAS  Google Scholar 

  38. Sentürker S, Tschirret-Guth R, Morrow J, Levine R, Shacter E. Induction of apoptosis by chemotherapeutic drugs without generation of reactive oxygen species. Arch Biochem Biophys. 2002;397:262–72.

    Article  PubMed  Google Scholar 

  39. Hauptlorenz S, Esterbauer H, Moll W, Pumpel R, Schauenstein E, Puschendorf B. Effects of the lipid peroxidation product 4-hydroxynonenal and related aldehydes on proliferation and viability of cultured Ehrlich ascites tumor cells. Biochem Pharmacol. 1985;34:3803–9.

    Article  PubMed  CAS  Google Scholar 

  40. Pizzimenti S, Menegatti E, Berardi D, Toaldo C, Pettazzoni P, Minelli R, Giglioni B, Cerbone A, Dianzani MU, Ferretti C, Barrera G. 4-Hydroxynonenal, a lipid peroxidation product of dietary polyunsaturated fatty acids, has anticarcinogenic properties in colon carcinoma cell lines through the inhibition of telomerase activity. J Nutr Biochem. 2010;21:818–26.

    Article  PubMed  CAS  Google Scholar 

  41. Riahi Y, Cohen G, Shamni O, Sasson S. Signaling and cytotoxic functions of 4-hydroxyalkenals. Am J Physiol Endocrinol Metab. 2010;299:E879–86.

    Article  PubMed  CAS  Google Scholar 

  42. Khoschsorur G, Schaur RJ, Schauenstein E, Tillian HM, Reiter M. Intracellular effect of hydroxyalkenals on animal tumors. Z Naturforsch. 1981;36:572–8.

    CAS  Google Scholar 

  43. Hussain AR, Ahmed M, Ahmed S, Manogaran P, Platanias LC, Alvi SN, Al-Kuraya KS, Uddin S. Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic Biol Med. 2011;50:978–87.

    Article  PubMed  CAS  Google Scholar 

  44. Yael R, Guy C, Ofer S, Shlomo S. Signaling and cytotoxic functions of 4 hydroxyalkenals. AJP–Endo. 2010;299:E879–86.

    Google Scholar 

  45. Shacter E, Williams JA, Hinson RM, Senturker S, Lee YJ. Oxidative stress interferes with cancer chemotherapy: inhibition of lymphoma cell apoptosis and phagocytosis. Blood. 2000;96:307–13.

    PubMed  CAS  Google Scholar 

  46. Lee YJ, Shacter E. Oxidative stress inhibits apoptosis in human lymphoma cells. J Biol Chem. 1999;274:19792–8.

    Article  PubMed  CAS  Google Scholar 

  47. Wilson KP, Black JAF, Thomson JA, et al. Structure and mechanism of interleukin-1β converting enzyme. Nature. 1994;370:270–5.

    Article  PubMed  CAS  Google Scholar 

  48. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–8.

    Article  PubMed  CAS  Google Scholar 

  49. Ali I, Sakhnini N, Naseem I. Hemolysis of human red blood cells by riboflavin–Cu (II) system. Biochemistry (Mosc). 2000;70:1011–4.

    Google Scholar 

  50. Ali I, Naseem I. Hemolysis of human red blood cells by combination of riboflavin and aminophylline. Life Sci. 2002;70:2013–22.

    Article  PubMed  CAS  Google Scholar 

  51. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radical in DNA damage and cancer incidence. J Natl Cancer Inst. 2004;266:37–56.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial assistance provided by the ICMR, India.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imrana Naseem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chibber, S., Farhan, M., Hassan, I. et al. Novel aspect of chemophototherapy in treatment of cancer. Tumor Biol. 33, 701–706 (2012). https://doi.org/10.1007/s13277-011-0288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0288-9

Keywords

Navigation