Skip to main content

Advertisement

Log in

Cellular changes in the tumor microenvironment of human esophageal squamous cell carcinomas

  • Research Article
  • Published:
Tumor Biology

Abstract

The growth, invasiveness, and metastasis of human cancers are not only determined by the cancer cells but also by their microenvironment. The purpose of this study was to extend our previous studies and to examine the cellular changes in tumor microenvironment (stroma) of esophageal squamous cell carcinomas (ESCCs). The proliferative activity, cellular components, and angiogenesis status in different compartments (non-tumor stroma, tumor stroma, and tumor periphery stroma) of ESCCs were evaluated by immunohistochemistry. The results revealed a hyperproliferative rate labeled by Ki-67 in stromal cells in tumor area as compared with that in stromal cells in non-tumor area, which resulted in the increased densities of myofibroblasts (labeled by smooth muscle actin (SMA)-alpha), lymphocytes (labeled by CD3), macrophages (labeled by CD68), and the activation of angiogenesis characterized by increased microvessel density (MVD) and the increased expression of the proangiogenic factors (vascular endothelial growth factor and interleukin 8) in the tumor stroma. Further analysis showed that the changes of stromal cell density were more significant in the area of periphery tumor stroma than that of stroma between tumor nests. Most cellular changes were significantly associated with lymph node involvement. Double immunohistochemistries with PCNA/CD3, PCNA/CD68, and PCNA/SMA-alpha revealed that these cells present in the ESCC tumor stroma had a proliferative capacity. The cells present in the tumor microenvironment of ESCCs were greatly activated, suggesting that microenvironmental components may be involved in the cancer growth and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PCNA:

Proliferating cell nuclear antigen

MVD:

Microvessel density

IL:

Interleukin

COX-2:

Cyclooxygenase-2

IDO:

Indoleamine 2, 3-dioxygenase

IHC:

Immunohistochemistry

ESCC:

Esophageal squamous cell carcinoma

References

  1. Ke L. Mortality and incidence trends from esophagus cancer in selected geographic areas of China circa 1970–90. Int J Cancer. 2002;102:271–4.

    Article  PubMed  CAS  Google Scholar 

  2. Song PI, Liang H, Fan JH, Wei WQ, Wang GQ, Qiao YL. Long-term survival after esophagectomy for early esophageal squamous cell carcinoma in Linxian, China. J Surg Oncol. 2011;104:176–80.

    Article  PubMed  Google Scholar 

  3. Whiteside TL. The role of immune cells in the tumor microenvironment. Cancer Treat Res. 2006;130:103–24.

    Article  PubMed  CAS  Google Scholar 

  4. Schottelius AJ, Dinter H. Cytokines, NF-kappaB, microenvironment, intestinal inflammation and cancer. Cancer Treat Res. 2006;130:67–87.

    Article  PubMed  CAS  Google Scholar 

  5. Gholamin M, Moaven O, Memar B, Farshchian M, Naseh H, Malekzadeh R, Sotoudeh M, Rajabi-Mashhadi MT, Forghani MN, Farrokhi F, Abbaszadegan MR. Overexpression and interactions of interleukin-10, transforming growth factor beta, and vascular endothelial growth factor in esophageal squamous cell carcinoma. World J Surg. 2009;33:1439–45.

    Article  PubMed  Google Scholar 

  6. Hsia JY, Chen JT, Chen CY, Hsu CP, Miaw J, Huang YS, Yang CY. Prognostic significance of intratumoral natural killer cells in primary resected esophageal squamous cell carcinoma. Chang Gung Med J. 2005;28:335–40.

    PubMed  Google Scholar 

  7. Mukherjee S, Roth MJ, Dawsey SM, Yan W, Rodriguez-Canales J, Erickson HS, Hu N, Goldstein AM, Taylor PR, Richardson AM, Tangrea MA, Chuaqui RF, Emmert-Buck MR. Increased matrix metalloproteinase activation in esophageal squamous cell carcinoma. J Transl Med. 2010;8:91.

    Article  PubMed  Google Scholar 

  8. Noma K, Smalley KS, Lioni M, Naomoto Y, Tanaka N, El-Deiry W, King AJ, Nakagawa H, Herlyn M. The essential role of fibroblasts in esophageal squamous cell carcinoma-induced angiogenesis. Gastroenterology. 2008;134:1981–93.

    Article  PubMed  Google Scholar 

  9. Yuan A, Liu J, Liu Y, Bjornsen T, Varro A, Cui G. Immunohistochemical examination of gastrin, gastrin precursors, and gastrin/CCK-2 receptor in human esophageal squamous cell carcinomas. Pathol Oncol Res. 2008;14:449–55.

    Article  PubMed  Google Scholar 

  10. Zhang C, Fu L, Fu J, Hu L, Yang H, Rong TH, Li Y, Liu H, Fu SB, Zeng YX, Guan XY. Fibroblast growth factor receptor 2-positive fibroblasts provide a suitable microenvironment for tumor development and progression in esophageal carcinoma. Clin Cancer Res. 2009;15:4017.

    Article  PubMed  CAS  Google Scholar 

  11. Kubota Y, Kaneko K, Konishi K, Ito H, Yamamoto T, Katagiri A, Muramoto T, Yano Y, Kobayashi Y, Oyama T, Kushima M, Imawari M. The onset of angiogenesis in a multistep process of esophageal squamous cell carcinoma. Front Biosci. 2009;14:3872–8.

    Article  PubMed  CAS  Google Scholar 

  12. Noguchi T, Takeno S, Shibata T, Uchida Y, Yokoyama S, Muller W. VEGF-C expression correlates with histological differentiation and metastasis in squamous cell carcinoma of the esophagus. Oncol Rep. 2002;9:995–9.

    PubMed  CAS  Google Scholar 

  13. Yu L, Wu WK, Li ZJ, Li HT, Wu YC, Cho CH. Prostaglandin E(2) promotes cell proliferation via protein kinase C/extracellular signal regulated kinase pathway-dependent induction of c-Myc expression in human esophageal squamous cell carcinoma cells. Int J Cancer. 2009;125:2540–6.

    Article  PubMed  CAS  Google Scholar 

  14. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL. Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res. 2007;67:8865–73.

    Article  PubMed  CAS  Google Scholar 

  15. Moussai D, Mitsui H, Pettersen JS, Pierson KC, Shah KR, Suarez-Farinas M, Cardinale IR, Bluth MJ, Krueger JG, Carucci JA. The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J Investig Dermatol. 2011;131:229–36.

    Article  PubMed  CAS  Google Scholar 

  16. Thode C, Jorgensen TG, Dabelsteen E, Mackenzie I, Dabelsteen S. Significance of myofibroblasts in oral squamous cell carcinoma. J Oral Pathol Med: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2011;40:201–7.

    Article  Google Scholar 

  17. Rao SK, Pavicevic Z, Du Z, Kim JG, Fan M, Jiao Y, Rosebush M, Samant S, Gu W, Pfeffer LM, Nosrat CA. Pro-inflammatory genes as biomarkers and therapeutic targets in oral squamous cell carcinoma. J Biol Chem. 2010;285:32512–21.

    Article  PubMed  CAS  Google Scholar 

  18. Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605–12.

    Article  PubMed  CAS  Google Scholar 

  19. Zips D, Eicheler W, Bruchner K, Jackisch T, Geyer P, Petersen C, van der Kogel AJ, Baumann M. Impact of the tumour bed effect on microenvironment, radiobiological hypoxia and the outcome of fractionated radiotherapy of human FaDu squamous-cell carcinoma growing in the nude mouse. Int J Radiat Biol. 2001;77:1185–93.

    Article  PubMed  CAS  Google Scholar 

  20. Guo SJ, Lin DM, Li J, Liu RZ, Zhou CX, Wang DM, Ma WB, Zhang YH, Zhang SR. Tumor-associated macrophages and CD3-zeta expression of tumor-infiltrating lymphocytes in human esophageal squamous-cell carcinoma. Dis Esophagus. 2007;20:107–16.

    Article  PubMed  CAS  Google Scholar 

  21. Watanabe M, Kono K, Kawaguchi Y, Mizukami Y, Mimura K, Maruyama T, Izawa S, Fujii H. NK cell dysfunction with down-regulated CD16 and up-regulated CD56 molecules in patients with esophageal squamous cell carcinoma. Dis Esophagus. 2010;23:675–81.

    Article  PubMed  CAS  Google Scholar 

  22. Liu J, Lu G, Li Z, Tang F, Liu Y, Cui G. Distinct compartmental distribution of mature and immature dendritic cells in esophageal squamous cell carcinoma. Pathol Res Pract. 2010;206:602–6.

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Lu G, Tang F, Liu Y, Cui G. Localization of indoleamine 2,3-dioxygenase in human esophageal squamous cell carcinomas. Virchows Arch. 2009;455:441–8.

    Article  PubMed  CAS  Google Scholar 

  24. Ishigami S, Natsugoe S, Matsumoto M, Okumura H, Sakita H, Nakashima S, Takao S, Aikou T. Clinical implications of intratumoral dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep. 2003;10:1237–40.

    PubMed  Google Scholar 

  25. Hu WM, Li L, Jing BQ, Zhao YS, Wang CL, Feng L, Xie YE. Effect of S1P5 on proliferation and migration of human esophageal cancer cells. World J Gastroenterol: WJG. 2010;16:1859–66.

    Article  PubMed  CAS  Google Scholar 

  26. Cui G, Koh TJ, Chen D, Zhao CM, Takaishi S, Dockray GJ, Varro A, Rogers AB, Fox JG, Wang TC. Overexpression of glycine-extended gastrin inhibits parietal cell loss and atrophy in the mouse stomach. Cancer Res. 2004;64:8160–6.

    Article  PubMed  CAS  Google Scholar 

  27. Cui G, Yuan A, Vonen B, Florholmen J. Progressive cellular response in the lamina propria of the colorectal adenoma–carcinoma sequence. Histopathology. 2009;54:550–60.

    Article  PubMed  Google Scholar 

  28. Cui G, Goll R, Olsen T, Steigen SE, Husebekk A, Vonen B, Florholmen J. Reduced expression of microenvironmental Th1 cytokines accompanies adenomas–carcinomas sequence of colorectum. Cancer Immunol Immunother. 2007;56:985–95.

    Article  PubMed  CAS  Google Scholar 

  29. Adegboyega PA, Ololade O, Saada J, Mifflin R, Di Mari JF, Powell DW. Subepithelial myofibroblasts express cyclooxygenase-2 in colorectal tubular adenomas. Clin Cancer Res. 2004;10:5870–9.

    Article  PubMed  CAS  Google Scholar 

  30. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  31. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200:429–47.

    Article  PubMed  Google Scholar 

  32. Yamada M, Suzu S, Tanaka-Douzono M, Wakimoto N, Hatake K, Hayasawa H, Motoyoshi K. Effect of cytokines on the proliferation/differentiation of stroma-initiating cells. J Cell Physiol. 2000;184:351–5.

    Article  PubMed  CAS  Google Scholar 

  33. Yu P, Fu YX. Tumor-infiltrating T lymphocytes: friends or foes? Lab Investig; A Journal of Technical Methods and Pathology. 2006;86:231–45.

    Article  CAS  Google Scholar 

  34. O’Sullivan C, Lewis CE. Tumour-associated leucocytes: friends or foes in breast carcinoma. J Pathol. 1994;172:229–35.

    Article  PubMed  Google Scholar 

  35. Sadanaga N, Kuwano H, Watanabe M, Maekawa S, Mori M, Sugimachi K. Local immune response to tumor invasion in esophageal squamous cell carcinoma. The expression of human leukocyte antigen-DR and lymphocyte infiltration. Cancer. 1994;74:586–91.

    Article  PubMed  CAS  Google Scholar 

  36. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  PubMed  CAS  Google Scholar 

  37. Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316:2713–22.

    Article  PubMed  Google Scholar 

  38. Tsuzuki S, Ota H, Hayama M, Sugiyama A, Akamatsu T, Kawasaki S. Proliferation of alpha-smooth muscle actin-containing stromal cells (myofibroblasts) in the lamina propria subjacent to intraepithelial carcinoma of the esophagus. Scand J Gastroenterol. 2001;36:86–91.

    Article  PubMed  CAS  Google Scholar 

  39. Hofmeister V, Schrama D, Becker JC. Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother. 2008;57:1–17.

    Article  PubMed  CAS  Google Scholar 

  40. Akutsu Y, Hanari N, Yusup G, Komatsu-Akimoto A, Ikeda N, Mori M, Yoneyama Y, Endo S, Miyazawa Y, Matsubara H. COX2 expression predicts resistance to chemoradiotherapy in esophageal squamous cell carcinoma. Ann Surg Oncol. 2011;18:2946–51.

    Article  PubMed  Google Scholar 

  41. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Konieczny D, Kustrzeba-Wojcicka I, Terlecki G, Banas T. Elevation of circulating interleukin-8 is related to lymph node and distant metastases in esophageal squamous cell carcinomas—implication for clinical evaluation of cancer patient. Cytokine. 2008;41:232–9.

    Article  PubMed  CAS  Google Scholar 

  42. Li Z, Liu J, Tang F, Liu Y, Waldum HL, Cui G. Expression of non-mast cell histidine decarboxylase in tumor-associated microvessels in human esophageal squamous cell carcinomas. APMIS. 2008;116:1034–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We express our sincere gratitude to Ms. Dana Frederick, Department of Cell Biology, University of Massachusetts Medical School for manuscript proofreading.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglin Cui.

Additional information

Jinzhong Liu and Zhenfeng Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Li, Z., Cui, J. et al. Cellular changes in the tumor microenvironment of human esophageal squamous cell carcinomas. Tumor Biol. 33, 495–505 (2012). https://doi.org/10.1007/s13277-011-0281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0281-3

Keywords

Navigation