Tumor Biology

, Volume 33, Issue 1, pp 223–228 | Cite as

PEBP4 gene expression and its significance in invasion and metastasis of non-small cell lung cancer

  • Gui-Ping Yu
  • Bin Huang
  • Guo-Qiang Chen
  • Song Wu
  • Yong Ji
  • Zhen-Ya Shen
Research Article


The goal of this study was to investigate the function of phosphatidylethanolamine-binding protein 4 (PEBP4) in invasion and metastasis of non-small cell lung cancer (NSCLC). PEBP4 mRNA and protein expression in 56 cases of NSCLC tissues were detected using RT-PCR and Western blot, and the relationship between PEBP4 expression and invasion and metastasis of NSCLC was analyzed. The change in the invasive ability of human NSCLC cell line HCC827 was observed after knocking down PEBP4 expression using RNA interference. PEBP4 mRNA and protein expression in cancer tissues of patients with lymph node metastasis were significantly higher than those in patients without lymph node metastasis (p < 0.05). PEBP4 expression significantly decreased in HCC827 cells after transfection with PEBP4 siRNA (p < 0.01), and the number of HCC827 cells that migrated through Transwell chambers was significantly lower than that of non-transfected control and transfected control cells (p < 0.01). PEBP4 over-expression may promote the invasion and metastasis of NSCLC.


Non-small cell lung cancer PEBP4 RNA interference 


Conflicts of interest



  1. 1.
    Al-Mulla F, Bitar MS, Al-Maghrebi M, Behbehani AI, Al-Ali W, Rath O, Doyle B, Tan KY, Pitt A, Kolch W. Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3beta. Cancer Res. 2011;71(4):1334–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Shao WL, Wang DY, He JX. The role of gene expression profiling in early-stage non-small cell lung cancer. J Thorac Dis. 2010;2(2):89–99.Google Scholar
  3. 3.
    Bernier I, Jolles P. Purification and characterization of a basic 23 kDa cytosolic protein from bovine brain. Biochim Biophys Acta. 1984;790(2):174–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Garcia R, Grindlay J, Rath O, Fee F, Kolch W. Regulation of human myoblast differentiation by PEBP4. EMBO Rep. 2009;10(3):278–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Amaya I, Ratcliffe OJ, Bradley DJ. Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell. 1999;11(8):1405–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Erttmann KD, Gallin MY. Onchocerca volvulus: identification of cDNAs encoding a putative phosphatidyl-ethanolamine-binding protein and a putative partially processed mRNA precursor. Gene. 1996;174(2):203–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Gu X, Ma C, Yuan D, Song Y. Circulating soluble intercellular adhesion molecule-1 in lung cancer: a systematic review. Transl Lung Cancer Res. 2011. doi: 10.3978/j.issn.2218-6751.08.01.
  8. 8.
    Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H. Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol. 2009;149(3):1341–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Odabaei G, Chatterjee D, Jazirehi AR, Goodglick L, Yeung K, Bonavida B. Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv Cancer Res. 2004;91:169–200.PubMedCrossRefGoogle Scholar
  10. 10.
    Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature. 1999;401(6749):173–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J Biol Chem. 2003;278(15):13061–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Shemon AN, Heil GL, Granovsky AE, Clark MM, McElheny D, Chimon A, Rosner MR, Koide S. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands. PLoS One. 2010;5(5):e10479.PubMedCrossRefGoogle Scholar
  13. 13.
    Zaravinos A, Chatziioannou M, Lambrou GI, Boulalas I, Delakas D, Spandidos DA. Implication of RAF and RKIP genes in urinary bladder cancer. Pathol Oncol Res. 2011;17(2):181–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang X, Li N, Liu B, Sun H, Chen T, Li H, Qiu J, Zhang L, Wan T, Cao X. A novel human phosphatidylethanolamine-binding protein resists tumor necrosis factor alpha-induced apoptosis by inhibiting mitogen-activated protein kinase pathway activation and phosphatidylethanolamine externalization. J Biol Chem. 2004;279(44):45855–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Qiu J, Xiao J, Han C, Li N, Shen X, Jiang H, Cao X. Potentiation of tumor necrosis factor-alpha-induced tumor cell apoptosis by a small molecule inhibitor for anti-apoptotic protein hPEBP4. J Biol Chem. 2010;285(16):12241–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu H, Qiu J, Li N, Chen T, Cao X. Human phosphatidylethanolamine-binding protein 4 promotes transactivation of estrogen receptor alpha (ERalpha) in human cancer cells by inhibiting proteasome-dependent ERalpha degradation via association with Src. J Biol Chem. 2010;285(29):21934–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Xiao DK, He JX. Epithelial mesenchymal transition and lung cancer. J Thorac Dis. 2010;2(3):154–9.Google Scholar
  18. 18.
    Zhang Y, Wang X, Xiang Z, Li H, Qiu J, Sun Q, Wan T, Li N, Cao X, Wang J. Promotion of cellular migration and apoptosis resistance by a mouse eye-specific phosphatidylethanolamine-binding protein. Int J Mol Med. 2007;19(1):55–63.PubMedGoogle Scholar
  19. 19.
    Wang X, Li N, Li H, Liu B, Qiu J, Chen T, Cao X. Silencing of human phosphatidylethanolamine-binding protein 4 sensitizes breast cancer cells to tumor necrosis factor-alpha-induced apoptosis and cell growth arrest. Clin Cancer Res. 2005;11(20):7545–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM, Kolch W. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol. 2000;20(9):3079–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Li H, Wang X, Li N, Qiu J, Zhang Y, Cao X. hPEBP4 resists TRAIL-induced apoptosis of human prostate cancer cells by activating Akt and deactivating ERK1/2 pathways. J Biol Chem. 2007;282(7):4943–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Winn RA, Marek L, Han SY, Rodriguez K, Rodriguez N, Hammond M, Van Scoyk M, Acosta H, Mirus J, Barry N, Bren-Mattison Y, Van Raay TJ, Nemenoff RA, Heasley LE. Restoration of Wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. J Biol Chem. 2005;280(20):19625–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Niquet J, Wasterlain CG. Bim, Bad, and Bax: a deadly combination in epileptic seizures. J Clin Invest. 2004;113(7):960–2.PubMedGoogle Scholar
  24. 24.
    Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene. 2005;24(44):6719–28.PubMedCrossRefGoogle Scholar
  25. 25.
    Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichlis PN. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci U S A. 1997;94(8):3627–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee MY, Ryu JM, Lee SH, Park JH, Han HJ. Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J Lipid Res. 2010;51(8):2082–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Li P, Wang X, Li N, Kong H, Guo Z, Liu S, Cao X. Anti-apoptotic hPEBP4 silencing promotes TRAIL-induced apoptosis of human ovarian cancer cells by activating ERK and JNK pathways. Int J Mol Med. 2006;18(3):505–10.PubMedGoogle Scholar
  28. 28.
    Qian Y, Corum L, Meng Q, Blenis J, Zheng JZ, Shi X, Flynn DC, Jiang BH. PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. Am J Physiol Cell Physiol. 2004;286(1):C153–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Syed DN, Afaq F, Sarfaraz S, Khan N, Kedlaya R, Setaluri V, Mukhtar H. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicol Appl Pharmacol. 2008;231(1):52–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, Chung J. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 2001;15(11):1953–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Yu HG, Li JY, Yang YN, Luo HS, Yu JP, Meier JJ, Schrader H, Bastian A, Schmidt WE, Schmitz F. Increased abundance of cyclooxygenase-2 correlates with vascular endothelial growth factor-A abundance and tumor angiogenesis in gastric cancer. Cancer Lett. 2003;195(1):43–51.PubMedCrossRefGoogle Scholar
  32. 32.
    Tahanian E, Sanchez LA, Shiao TC, Roy R, Annabi B. Flavonoids targeting of IkappaB phosphorylation abrogates carcinogen-induced MMP-9 and COX-2 expression in human brain endothelial cells. Drug Des Devel Ther. 2011;5:299–309.PubMedGoogle Scholar
  33. 33.
    Maroni P, Matteucci E, Luzzati A, Perrucchini G, Bendinelli P, Desiderio MA. Nuclear co-localization and functional interaction of COX-2 and HIF-1alpha characterize bone metastasis of human breast carcinoma. Breast Cancer Res Treat. 2011;129(2):433–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Tammali R, Saxena A, Srivastava SK, Ramana KV. Aldose reductase inhibition prevents hypoxia-induced increase in hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) by regulating 26 S proteasome-mediated protein degradation in human colon cancer cells. J Biol Chem. 2011;286(27):24089–100.PubMedCrossRefGoogle Scholar
  35. 35.
    Yang HH, Zhang Q, He JX, Lu WJ. Regulation of calcium signaling in lung cancer. J Thorac Dis. 2010;2(1):52–6.Google Scholar
  36. 36.
    Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng GQ, Wan XX, He QY, Li JH, Qu JQ, Chen Y, Xiao ZQ. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem. 2011;112(9):2508–17.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  • Gui-Ping Yu
    • 1
  • Bin Huang
    • 1
  • Guo-Qiang Chen
    • 1
  • Song Wu
    • 1
  • Yong Ji
    • 1
  • Zhen-Ya Shen
    • 2
  1. 1.Department of Cardiothoracic SurgeryAffiliated Jiangyin Hospital of Southeast UniversityJiangyinChina
  2. 2.Department of Cardiothoracic SurgeryFirst Affiliated Hospital of Soochow UniversitySoochowChina

Personalised recommendations