Tumor Biology

, Volume 33, Issue 1, pp 195–205 | Cite as

Metabolic restriction of cancer cells in vitro causes karyotype contraction—an indicator of cancer promotion?

  • Ying Li
  • Paul Héroux
  • Igor Kyrychenko
Research Article


The metabolism of cultured cancer cells is stimulated by 21% oxygen and generous nutrition, while real tumors grow in oxygen and nutrient-restricted environments. The effect of these contrasted conditions was studied in five hyperploid (54–69) cancer cell lines. When grown under anoxia and in the presence of antioxidant metabolic restrictors, the cell lines quickly reverted to almost normal chromosome numbers (47–49). The stepped withdrawal of oxygen over K562 showed progressive increases in proliferation rate and the acquisition of a stable, stem phenotype. In genetic studies, hyperploid cancer cells adjusted their chromosome numbers up or down to match their micro-environment through rapid mechanisms of endo-reduplication or chromosome loss. These fast reactions may explain the surprising adaptability of tumor cells to oncologic interventions. Furthermore, karyotype contraction may provide a basis for the previously observed carcinogenic influence of the administration of some antioxidants in human populations.


Tumour evolution Karyotype contraction Metabolic restriction Endo-reduplication Chromosome instability Antioxidants 



We are grateful to Janet Moir and Lorne Beckman of the Royal Victoria Hospital. We are indebted to Josée Hébert, Sylvie Lavallée, and Claude Rondeau, Immunology and Cancer Research Institute of Maisonneuve-Rosemont Hospital. We thank Drs. Zhang Guo Chen and Ju Yan for reviewing the paper. The work was supported by Royal Victoria Hospital Research Institute Fund 65891.

Conflicts of interest



  1. 1.
    Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute. 2001;93:4. doi: 10.1093/jnci/93.4.266.CrossRefGoogle Scholar
  2. 2.
    Thompson J, Conlon J, Yang X, Sanchez P, Carroll M. Enhanced growth of myelodysplastic colonies in hypoxic conditions. Experimental hematology. 2007;35(1):21–31. doi: 10.1016/j.exphem.2006.08.017.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson GR, Stoler DL, Scarcello LA. Normal fibroblasts responding to anoxia exhibit features of the malignant phenotype. J Biol Chem. 1989;264:14885–92.PubMedGoogle Scholar
  4. 4.
    Cipolleschi M, Dello Sbarba P, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood. 1993;82:2031.PubMedGoogle Scholar
  5. 5.
    Cuvier C, Jang A, Hill RP. Exposure to hypoxia, glucose starvation and acidosis: effect on invasive capacity of murine tumor cells and correlation with cathepsin (L + B) secretion. Clin Exp Metastasis. 1997;15:19–25. doi: 10.1023/A:1018428105463.PubMedCrossRefGoogle Scholar
  6. 6.
    Papandreou I, Krishna C, Kaper F, Cai D, Giaccia AJ, Denko NC. Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Res. 2005;65:8. doi: 10.1158/0008-5472.CAN-04-3395.Google Scholar
  7. 7.
    Papandreou I, Powell A, Lim AL, Denko N. Cellular reaction to hypoxia: sensing and responding to an adverse environment. Mutation Research. 2005;569:87–100. doi: 10.1016/j.mrfmmm.2004.06.054.PubMedGoogle Scholar
  8. 8.
    Jezek P, Plecita-Hlavata L, Smolkova K, Rossignol R. Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol. 2010;42:604–22. doi: 10.1016/j.biocel.2009.11.008.PubMedCrossRefGoogle Scholar
  9. 9.
    Matsumoto S, Hyodo F, Subramanian S, Devasahayam N, Munasinghe J, Hyodo E, et al. Low-field paramagnetic resonance imaging of tumor oxygenation and glycolytic activity in mice. The Journal of clinical investigation. 2008;118:1965. doi: 10.1172/JCI34928.PubMedGoogle Scholar
  10. 10.
    Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975;45:321–34.PubMedGoogle Scholar
  11. 11.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–9. doi: 10.1038/25292.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones RG, Thomson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes & Development. 2009;23:537–48. doi: 10.1101/gad.1756509.CrossRefGoogle Scholar
  13. 13.
    Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E, et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nature Genetics. 1998;19:66–9. doi: 10.1038/1727.CrossRefGoogle Scholar
  14. 14.
    Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Research. 1997;57:4183–6.PubMedGoogle Scholar
  15. 15.
    Willenbucher RF, Aust DE, Chang CG, Zelman SJ, Ferrell LD, Moore DH, et al. Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am J Pathol. 1999;154(6):1825–30. doi: 10.1016/S0002-9440(10)65438-7.PubMedCrossRefGoogle Scholar
  16. 16.
    Farag SS, Archer KJ, Mrozek K, Vardiman JW, Carroll AJ, Pettenati MJ, et al. Isolated trisomy of chromosomes 8, 11, 13 and 21 is an adverse prognostic factor in adults with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Int J Oncol. 2002;21(5):1041–51.PubMedGoogle Scholar
  17. 17.
    Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nature Genetics. 2003;34:4. doi: 10.1038/ng1215.CrossRefGoogle Scholar
  18. 18.
    Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer. 2007;7:233–45. doi: 10.1038/nrc2091.PubMedCrossRefGoogle Scholar
  19. 19.
    Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14. doi: 10.1126/science.123.3191.309.PubMedCrossRefGoogle Scholar
  20. 20.
    Schultz BE, Chan SI. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu Rev Biophys Biomol Struct. 2001;30:23–65. doi: 10.1146/annurev.biophys.30.1.23.PubMedCrossRefGoogle Scholar
  21. 21.
    Masini A, Ceccarelli-Stanzani D, Muscatello U. An investigation on the effect of oligomycin on state-4 respiration in isolated rat-liver mitochondria. Biochim Biophys Acta. 1984;767:130–7. doi: 10.1016/0005-2728(84)90087-2.PubMedCrossRefGoogle Scholar
  22. 22.
    Poeggeler B, Saarela S, Reiter RJ, Tan DX, Chen LD, Manchester LC, et al. Melatonin—a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann N Y Acad Sci. 1994;738:419–20. doi: 10.1111/j.1749-6632.1994.tb21831.x.PubMedCrossRefGoogle Scholar
  23. 23.
    Levine M, Rumsey SC, Wang Y, Park JB, Daruwala R. Vitamin C. In: Stipanuk MH, editor. Biochemical and physiological aspects of human nutrition. Philadelphia: W.B. Saunders; 2000. p. 541–67.Google Scholar
  24. 24.
    Takimoto CH, Calvo E. Principles of oncologic pharmacotherapy. In: Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ, editors. Cancer management: a multidisciplinary approach. 11th ed. Lawrence: CMPMedica; 2008.Google Scholar
  25. 25.
    Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab. 1999;277:E1–E10.Google Scholar
  26. 26.
    Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays. 2001;23:1112–9. doi: 10.1002/bies.10009.PubMedCrossRefGoogle Scholar
  27. 27.
    Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Molecular Cell. 2005;18:283–93. doi: 10.1016/j.molcel.2005.03.027.PubMedCrossRefGoogle Scholar
  28. 28.
    Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation—AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006;574:63–71. doi: 10.1113/jphysiol.2006.108324.PubMedCrossRefGoogle Scholar
  29. 29.
    Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100:328–41. doi: 10.1161/01.RES.0000256090.42690.05.PubMedCrossRefGoogle Scholar
  30. 30.
    Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8:774–85. doi: 10.1038/nrm2249.PubMedCrossRefGoogle Scholar
  31. 31.
    Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD(+) metabolism and SIRT1 activity. Nature. 2009;458:1056–60. doi: 10.1038/nature07813.PubMedCrossRefGoogle Scholar
  32. 32.
    Héroux P, Kyrychenko I, Bourdages M. Proliferation and apoptosis rates of living human erythroleukemia cells. Microscopy and Analysis 2004:13–6.Google Scholar
  33. 33.
    Yu Z, Chen T, Hébert J, Li E, Richard S. A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol. 2009;29(11):2982–96. doi: 10.1128/MCB.00042-09.PubMedCrossRefGoogle Scholar
  34. 34.
    Tan D, Manchester L, Reiter R, Qi W, Zhang M, Weintraub S, et al. Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochimica et Biophysica Acta (BBA)-General Subjects. 1999;1472:206–14. doi: 10.1016/S0304-4165(99)00125-7.CrossRefGoogle Scholar
  35. 35.
    Yang JY, Ha SA, Yang YS, Kim JW. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance. BMC Cancer. 2010;10:388. doi: 10.1186/1471-2407-10-388.PubMedCrossRefGoogle Scholar
  36. 36.
    Spriggs A, Boddington M, Clarke C. Chromosomes of human cancer cells. British Medical Journal. 1962;2:1431.PubMedCrossRefGoogle Scholar
  37. 37.
    Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, et al. Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One. 2007;2(6):e558. doi: 10.1371/journal.pone.0000558.PubMedCrossRefGoogle Scholar
  38. 38.
    Naumann S, Reutzel D, Speicher M, Decker HJ. Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res. 2001;25:313–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Griffith L, Swartz M. Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology. 2006;7:211–24. doi: 10.1038/nrm1858.PubMedCrossRefGoogle Scholar
  40. 40.
    Dimery IW, Ross DD, Testa JR, Gupta SK, Felsted RL, Pollak A, et al. Variation amongst K562 cell cultures. Exp Hematol. 1983;11:601–10.PubMedGoogle Scholar
  41. 41.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8. doi: 10.1126/science.959840.PubMedCrossRefGoogle Scholar
  42. 42.
    Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature. 2004;432:338–41. doi: 10.1038/446038a.PubMedCrossRefGoogle Scholar
  43. 43.
    Levan A, Hauschka TS. Endomitotic reduplication mechanisms in ascites tumors of the mouse. J Natl Cancer Inst. 1953;14:1–43.PubMedGoogle Scholar
  44. 44.
    Salmon ED, Cimini D, Cameron LA, DeLuca JG. Merotelic kinetochores in mammalian tissue cells. Phil Trans R Soc B. 2005;360:553–68. doi: 10.1098/rstb.2004.1610.PubMedCrossRefGoogle Scholar
  45. 45.
    Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nature Reviews Cancer. 2002;2(11):815–25. doi: 10.1038/nrc924.PubMedCrossRefGoogle Scholar
  46. 46.
    King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25:4675–82. doi: 10.1038/sj.onc.1209594.PubMedCrossRefGoogle Scholar
  47. 47.
    Menon S, Manning BD. Common corruption of the mTOR signaling network in human tumors. Oncogene. 2009;27:S43–51. doi: 10.1038/onc.2009.352.CrossRefGoogle Scholar
  48. 48.
    Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. Journal of Cell Science. 2007;120:4155–66. doi: 10.1242/jcs.011163.PubMedCrossRefGoogle Scholar
  49. 49.
    Kim SH, Nagalingam A, Saxena NK, Singh SV, Sharma D. Benzyl isothiocyanate inhibits oncogenic actions of leptin in human breast cancer cells by suppressing activation of signal transducer and activator of transcription. Carcinogenesis. 2011;32:359–67. doi: 10.1093/carcin/bgq267.PubMedCrossRefGoogle Scholar
  50. 50.
    Duivenvoorde LPM, Schothorst EMV, Bunschoten A, Keijer J. Dietary restriction of mice on a high-fat diet induces substrate efficiency and improves metabolic health. Journal of Molecular Endocrinology. 2011;47:81–97. doi: 10.1530/JME-11-0001.CrossRefGoogle Scholar
  51. 51.
    Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PEZ, Nelson SJ, et al. 13C-Pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metabolism. 2011;14:131–42. doi: 10.1016/j.cmet.2011.04.012.PubMedCrossRefGoogle Scholar
  52. 52.
    Alfarouk KO, Shayoub MEA, Muddathir AK, Elhassan GO, Bashir AHH. Evolution of tumor metabolism might reflect carcinogenesis as a reverse evolution process (dismantling of multicellularity). Cancers. 2011;3:3002–17. doi: 10.3390/cancers3033002.CrossRefGoogle Scholar
  53. 53.
    Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution. A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9:3256–76. doi: 10.4161/cc.9.16.12553.PubMedCrossRefGoogle Scholar
  54. 54.
    Polianskaia GG, D’iakonova MIu. Effect of cultivation conditions on the karyotype structure of a cell subline of the kangaroo rat kidney. Tsitologiia. 1988;30(11):1355–63.PubMedGoogle Scholar
  55. 55.
    Jin Y, Mertens F, Mandahl N, Heim S, Olegård C, Wennerberg J, et al. Chromosome abnormalities in eighty-three head and neck squamous cell carcinomas: influence of culture conditions on karyotypic pattern. Cancer Research. 1993;53:2140–6.PubMedGoogle Scholar
  56. 56.
    Wenger SL, Senft JR, Sargent LM, Bamezai R, Bairwa N, Grant SG. Comparison of established cell lines at different passages by karyotype and comparative genomic hybridization. Bioscience Reports. 2004;24(6):631–9. doi: 10.1007/s10540-005-2797-5.PubMedCrossRefGoogle Scholar
  57. 57.
    Moralli D, Yusuf M, Mandegar MA, Khoja S, Monaco ZL, Volpi EM. An improved technique for chromosomal analysis of human ES and iPS cells. Stem Cell Rev and Rep. 2011;7:471–7. doi: 10.1007/s12015-010-9224-4.CrossRefGoogle Scholar
  58. 58.
    Muleris M, Delattre O, Olschwang S, Dutrillaux A-M, Remvikos Y, Salmon R-J, et al. Cytogenetic and molecular approaches of polyploidization in colorectal adenocarcinomas. Cancer Genetics and Cytogenetics. 1990;44:107–18.PubMedCrossRefGoogle Scholar
  59. 59.
    Sutou S, Tokuyama F. Induction of endoreduplication in cultured mammalian cells by some chemical mutagens. Cancer Res. 1974;34:2615–23.PubMedGoogle Scholar
  60. 60.
    Huang Y, Chang CC, Trosko JE. Aphidicolin-induced endoreduplication in Chinese hamster cells. Cancer Res. 1983;43:1361–4.PubMedGoogle Scholar
  61. 61.
    Gatti G, Maresca G, Natoli M, Florenzano F, Nicolin A, Felsani A, et al. MYC prevents apoptosis and enhances endoreduplication induced by paclitaxel. PLoS One. 2009;4(5):15. doi: 10.1371/journal.pone.0005442.CrossRefGoogle Scholar
  62. 62.
    Cortés F, Mateos S, Pastor N, Domínguez I. Toward a comprehensive model for induced endoreduplication. Life sciences. 2004;76:121–35. doi: 10.1016/j.lfs.2004.08.006.PubMedCrossRefGoogle Scholar
  63. 63.
    Duesberg P, Li R, Sachs R, Fabarius A, Upender MB, Hehlmann R. Cancer drug resistance: the central role of the karyotype. Drug Resistance Updates. 2007;10:51–8. doi: 10.1016/j.drup.2007.02.003.PubMedCrossRefGoogle Scholar
  64. 64.
    Larizza L, Schirrmacher V. Somatic cell fusion as a source of genetic rearrangement leading to metastatic variants. Cancer Metastasis Rev. 1984;3:193–222.PubMedCrossRefGoogle Scholar
  65. 65.
    Rasnick D, Duesberg PH. How aneuploidy affects metabolic control and causes cancer. Biochem J. 1999;340:621–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Nagai F, Kato E, Tamura H. Oxidative stress induces GSTP1 and CYP3A4 expression in the human erythroleukemia cell line, K562. Biol Pharm Bull. 2004;27:492–5. doi: 10.1248/bpb.27.492.PubMedCrossRefGoogle Scholar
  67. 67.
    Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. Seminars in radiation oncology. 2009;19:106–11. doi: 10.1016/j.semradonc.2008.12.002.PubMedCrossRefGoogle Scholar
  68. 68.
    Li L, Neaves W. Normal stem cells and cancer stem cells: the niche matters. Cancer research. 2006;66:4553. doi: 10.1158/0008-5472.CAN-05-3986.PubMedCrossRefGoogle Scholar
  69. 69.
    Walenta S, Snyder S, Haroon Z, Braun R, Amin K, Brizel D, et al. Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model. International Journal of Radiation Oncology Biology Physics. 2001;51:840–8. doi: 10.1016/S0360-3016(01)01700-X.CrossRefGoogle Scholar
  70. 70.
    Lash GE, Postovit LM, Matthews NE, Chung EY, Canning MT, Pross H, et al. Oxygen as a regulator of cellular phenotypes in pregnancy and cancer. Can J Physiol Pharmacol. 2002;80:103–9. doi: 10.1139/y02-008.PubMedCrossRefGoogle Scholar
  71. 71.
    Jögi A, Øra I, Nilsson H, Poellinger L, Axelson H, Påhlman S. Hypoxia-induced dedifferentiation in neuroblastoma cells. Cancer Letters. 2003;197:145–50. doi: 10.1016/S0304-3835(03)00095-8.PubMedCrossRefGoogle Scholar
  72. 72.
    Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer research. 1996;56:941.PubMedGoogle Scholar
  73. 73.
    Nordsmark M, Hoyer M, Keller J, Nielsen OS, Jensen OM, Overgaard J. The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys. 1996;35:701–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Sotgia F, Martinez-Outschoorn U, Lisanti M. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Medicine. 2011;9(1):62. doi: 10.1186/1741-7015-9-62.PubMedCrossRefGoogle Scholar
  75. 75.
    Klein EA, Thompson Jr IM, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306(14):1549–56. doi: 10.1001/jama.2011.1437.PubMedCrossRefGoogle Scholar
  76. 76.
    (1994) The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N Engl J Med 330(15):1029–35.Google Scholar
  77. 77.
    Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. New England Journal of Medicine. 1996;334(18):1150–5.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  1. 1.InVitroPlus Laboratory, Department of SurgeryRoyal Victoria HospitalMontrealCanada
  2. 2.Department of Epidemiology, Biostatistics and Occupational HealthMcGill UniversityMontrealCanada
  3. 3.Cell Culture TechnologiesTorontoCanada
  4. 4.Faculty of MedicineMcGill UniversityMontrealCanada

Personalised recommendations