Tumor Biology

, 32:1217 | Cite as

Silencing of c-Met by RNA interference inhibits the survival, proliferation, and invasion of nasopharyngeal carcinoma cells

  • Yuncheng Li
  • Sulin Zhang
  • Zhengang Tang
  • Jian Chen
  • Weijia Kong
Research Article


c-Met is a tyrosine kinase receptor that mediates pleiotropic cellular responses following its activation by hepatocyte growth factor. The overexpression of c-Met in nasopharyngeal carcinoma (NPC) has been described recently, but the functional role of c-Met in NPC remains incompletely understood. This study aimed to investigate the potential mechanism by which c-Met contributes to the tumorigenesis of NPC. In the present study, by using RNA interference we silenced the expression of c-Met in CNE-2 cells, a poorly differentiated NPC cell line. Our in vitro studies showed that shRNA-mediated depletion of c-Met resulted in the suppression of proliferation, migration, and invasion, as well as an increase in the apoptosis of CNE-2 cells. Moreover, in xenograft nude mice we demonstrated that the depletion of c-Met resulted in reduced tumor growth and increased apoptosis in xenografts. Taken together, these results suggest that c-Met plays an oncogenic role in the development of NPC and reveal it as a potential novel therapeutic target for NPC.


c-Met Nasopharyngeal carcinoma Proliferation Invasion Apoptosis 



This study was supported by grants from the National Natural Science Foundation of China (no. 30801282), and the Research Fund for the Doctoral Program of Higher Education of China (no. 20020487062).

Conflicts of interest



  1. 1.
    Zhengrong Wu, Li G, Lirong Wu, Weng D, Li X, Yao K. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma. BMC Cancer. 2009;3:1–14.Google Scholar
  2. 2.
    Spano JP, Busson P, Atlan D, Bourhis J, Pignon JP, Esteban C, et al. Nasopharyngeal carcinoma: an update. Eur J Cancer. 2003;15:2121–35.CrossRefGoogle Scholar
  3. 3.
    Farias TP, Dias FL, Lima RA, Kligerman J, de Sá GM, Barbosa MM, et al. Prognostic factors and outcome for nasopharyngeal carcinoma. Arch Otolaryngol Head Neck Surg. 2003;7:794–9.CrossRefGoogle Scholar
  4. 4.
    Teo PM, Kwan WH, Lee WY, Leung SF, Johnson PJ. Prognosticators determining survival subsequent to distant metastasis from nasopharyngeal carcinoma. Cancer. 1996;12:2423–31.CrossRefGoogle Scholar
  5. 5.
    Al-Sarraf M, LeBlanc M, Giri PG, Fu KK, Cooper J, Vuong T, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol. 1998;4:1310–7.Google Scholar
  6. 6.
    Ma BB, Chan AT. Recent perspectives in the role of chemotherapy in the management of advanced nasopharyngeal carcinoma. Cancer. 2005;1:22–31.CrossRefGoogle Scholar
  7. 7.
    Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 2002;6:421–9.CrossRefGoogle Scholar
  8. 8.
    Burt RD, Vaughan TL, Nisperos B, Swanson M, Berwick M. A prospective association between the HLA-A2 antigen and nasopharyngeal carcinoma in US Caucasians. Int J Cancer. 1994;4:465–7.CrossRefGoogle Scholar
  9. 9.
    Lo KW, Teo PM, Hui AB, To KF, Tsang YS, Chan SY, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res. 2000;13:3348–53.Google Scholar
  10. 10.
    Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;4995:802–4.CrossRefGoogle Scholar
  11. 11.
    Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;6:504–16.CrossRefGoogle Scholar
  12. 12.
    Di Renzo MF, Narsimhan RP, Olivero M, Bretti S, Giordano S, Medico E, et al. Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene. 1991;11:1997–2003.Google Scholar
  13. 13.
    Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005;1:1–26.CrossRefGoogle Scholar
  14. 14.
    Xie LQ, Bian LJ, Li Z, Li Y, Li ZX, Li B. Altered expression of E-cadherin by hepatocyte growth factor and effect on the prognosis of nasopharyngeal carcinoma. Ann Surg Oncol. 2010;7:1927–36.CrossRefGoogle Scholar
  15. 15.
    Jeffers M, Rong S, Woude GF. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med. 1996;9:505–13.CrossRefGoogle Scholar
  16. 16.
    Lui VWY, Wong EYL, Ho K, Ng PKS, Lau CPY, Tsui SKW, et al. Inhibition of c-Met downregulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene. 2011;9:1127–34.CrossRefGoogle Scholar
  17. 17.
    Zhou HY, Wan KF, Ip CK, Wong CK, Mak NK, Lo KW, et al. Hepatocyte growth factor enhances proteolysis and invasiveness of human nasopharyngeal cancer cells through activation of PI3K and JNK. FEBS Letters. 2008;582:3415–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 2002;1:41–59.CrossRefGoogle Scholar
  19. 19.
    Grabellus F, Konik MJ, Worm K, Sheu SY, van de Nes JA, Bauer S, et al. MET overexpressing chordomas frequently exhibit polysomy of chromosome 7 but no MET activation through sarcoma-specific gene fusions. Tumour Biol. 2010;31:157–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, Tahara E. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun. 1992;189:227–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Di Renzo MF, Olivero M, Serini G, Orlandi F, Pilotti S, Belfiore A, et al. Overexpression of the c-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. J Endocrinol Invest. 1995;18:134–9.PubMedGoogle Scholar
  22. 22.
    Xie B, Xing R, Chen P, Gou Y, Li S, Xiao J, et al. Down-regulation of c-Met expression inhibits human HCC cells growth and invasion by RNA interference. J Surg Res. 2010;162:231–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Mariotti M, Castiglioni S, Maier JA. Inhibition of T24 human bladder carcinoma cell migration by RNA interference suppressing the expression of HD-PTP. Cancer Lett. 2009;1:155–63.CrossRefGoogle Scholar
  24. 24.
    Su JL, Yang PC, Shih JY, Yang CY, Wei LH, Hsieh CY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cell. Cancer Cell. 2006;3:209–23.CrossRefGoogle Scholar
  25. 25.
    Cattaruzza S, Perris R. Proteoglycan control of cell movement during wound healing and cancer spreading. Matrix Biol. 2005;6:400–17.CrossRefGoogle Scholar
  26. 26.
    Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF. The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci U S A. 1998;24:14417–22.CrossRefGoogle Scholar
  27. 27.
    Kermorgant S, Aparicio T, Dessirier V, Lewin MJ, Lehy T. Hepatocyte growth factor induces colonic cancer cell invasiveness via enhanced motility and protease overproduction. Evidence for PI3 kinase and PKC involvement. Carcinogenesis. 2001;7:1035–42.CrossRefGoogle Scholar
  28. 28.
    Gual P, Giordano S, Williams TA, Rocchi S, Van Obberghen E, Comoglio PM. Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene. 2000;12:1509–18.CrossRefGoogle Scholar
  29. 29.
    Gual P, Giordano S, Anguissola S, Parker PJ, Comoglio PM. Gab1 phosphorylation: a novel mechanism for negative regulation of HGF receptor signaling. Oncogene. 2001;2:156–66.CrossRefGoogle Scholar
  30. 30.
    Tulasne D, Foveau B. The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ. 2008;3:427–34.CrossRefGoogle Scholar
  31. 31.
    Ueda K, Iwahashi M, Matsuura I, Nakamori M, Nakamura M, Ojima T, et al. Adenoviral-mediated gene transduction of the hepatocyte growth factor (HGF) antagonist, NK4, suppresses peritoneal metastases of gastric cancer in nude mice. Eur J Cancer. 2004;14:2135–42.CrossRefGoogle Scholar
  32. 32.
    Li W, Cai S, Cai L, Li X. Anti-apoptotic effect of hepatocyte growth factor from actinomycin D in hepatocyte-derived HL7702 cells is associated with activation of PI3K/Akt signaling. Toxicol Lett. 2006;2:142–8.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  • Yuncheng Li
    • 1
  • Sulin Zhang
    • 1
  • Zhengang Tang
    • 1
  • Jian Chen
    • 1
  • Weijia Kong
    • 1
  1. 1.Department of Otolaryngology, Union Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations