Tumor Biology

, 32:1071 | Cite as

HLA-G regulators in cancer medicine: an outline of key requirements

  • Ines Zidi
  • Nidhal Ben Amor


HLA-G is unique among the class I human leukocyte antigens. It plays a pivotal role in immune tolerance and a paradoxical role in therapies. Indeed, HLA-G expression is associated with a good prognosis in organ transplantation and an ominous prognosis in cancer. Recent progress has been made in HLA-G regulation identification, especially on human cell lines; however, little is known about their role in cancer therapy. Based on the role of HLA-G expression in cancer, we investigated the potential impact of the regulation of this expression on the outcome of some cancers. In this communication, we emphasize the importance of screening for HLA-G expression after cancer therapy. Future clinical trials could lead to a better understanding of the implication of HLA-G expression in cancer and lead to a better knowledge of cancer monitoring and recurrence. These studies could also implicate HLA-G as a therapeutic target in cancer therapy.


HLA-G Cancer Therapy Regulators Modulation 





Dendritic cells




Food and Drug Administration


Granulocyte macrophage colony-stimulating factor


Histone deacetylase


Human leukocyte antigen-G


Indoleamine 2,3-dioxygenase






Immunoglobulin-like transcript


Killer inhibitory receptor


Shedding of HLA-G1


Soluble HLA-G


Tumor necrosis factor


Conflicts of interest



  1. 1.
    LeMaoult J, Zafaranloo K, Le Danff C, Carosella ED. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005;19:662–4.PubMedGoogle Scholar
  2. 2.
    Moreau P, Flajollet S, Carosella ED. Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med. 2009;13(98):2973–89.PubMedCrossRefGoogle Scholar
  3. 3.
    Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED. The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA. 1997;94:5249–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED. HLA-G2, -G3, and -G4 Isoforms Expressed as Nonmature Cell Surface Glycoproteins Inhibit NK and Antigen-Specific CTL Cytolysis. J Immunol. 2001;166:5018–26.PubMedGoogle Scholar
  5. 5.
    Marchal-Bras-Goncalves R, Rouas-Freiss N, Connan F, Choppin J, Dausset J, Carosella ED, et al. A soluble HLA-G protein that inhibits natural killer cell-mediated cytotoxicity. Transplant Proc. 2001;33:2355–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Le Rond S, Le Maoult J, Créput C, Menier C, Deschamps M, Le Friec G, et al. Alloreactive CD4+ and CD8+ T cells express the immunotolerant HLA-G molecule in mixed lymphocyte reactions: in vivo implications in transplanted patients. Eur J Immunol. 2004;34:649–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Lila N, Rouas-Freiss N, Dausset J, Carpentier A, Carosella ED. Soluble HLA-G protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative response: A CD4+ T cell regulatory mechanism. Proc Natl Acad Sci USA. 2001;98:12150–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Amiot L, Ferrone S, Grosse-Wilde H, Seliger B. Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell Mol Life Sci. 2011;68(3):417–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Kanai T, Fujii T, Unno N, Yamashita T, Hyodo H, Miki A, et al. Human leukocyte antigen-G-expressing cells differently modulate the release of cytokines from mononuclear cells present in the decidua versus peripheral blood. Am J Reprod Immunol. 2001;45(2):94–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kanai T, Fujii T, Kozuma S, Yamashita T, Miki A, Kikuchi A, et al. Soluble HLA-G influences the release of cytokines from allogeneic peripheral blood mononuclear cells in culture. Mol Hum Reprod. 2001;7(2):195–200.PubMedCrossRefGoogle Scholar
  11. 11.
    Le Rond S, Azéma C, Krawice-Radanne I, Durrbach A, Guettier C, Carosella ED, et al. Evidence to support the role of HLA-G5 in allograft acceptance through induction of immunosuppressive/ regulatory T cells. J Immunol. 2006;176(5):3266–76.PubMedGoogle Scholar
  12. 12.
    Chen HX, Lin A, Shen CJ, Zhen R, Chen BG, Zhang X, et al. Upregulation of human leukocyte antigen-G expression and its clinical significance in ductal breast cancer. Hum Immunol. 2010;71(9):892–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood. 2010;116(6):935–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Creput C, Durrbach A, Menier C, Guettier C, Samuel D, Dausset J, et al. Human leukocyte antigen-G (HLA-G) expression in biliary epithelial cells is associated with allograft acceptance in liver-kidney transplantation. J Hepatol. 2003;39:587–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Lila N, Amrein C, Guillemain R, Chevalier P, Latremouille C, Fabiani JN, et al. Human leukocyte antigen-G expression after heart transplantation is associated with a reduced incidence of rejection. Circulation. 2002;105:1949–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Rouas-Freiss N, Moreau P, Menier C, LeMaoult J, Carosella ED. Expression of tolerogenic HLA-G molecules in cancer prevents antitumor responses. Semin Cancer Biol. 2007;17(6):413–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Sheu J, Shih I. HLA-G and immune evasion in cancer cells. J Formos Med Assoc. 2010;109(4):248–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Park GM, Lee S, Park B, Kim E, Shin J, Cho K, et al. Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophs Res Commun. 2004;313:606–11.CrossRefGoogle Scholar
  19. 19.
    Singer G, Rebmann V, Chen YC, Liu HT, Ali SZ, Reinsberg J, et al. HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res. 2003;9(12):4460–4.PubMedGoogle Scholar
  20. 20.
    Davidson B, Elstrand MB, McMaster M, Berner A, Kurman RJ, Risberg B, et al. HLA-G expression in effusions is a possible marker of tumor susceptibility to chemotherapy in ovarian carcinoma. Gynecol Oncol. 2005;96(1):42–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Leleu X, Le Friec G, Facon T, Amiot L, Fauchet R, Hennache B, et al. Total soluble HLA class I and soluble HLA-G in multiple myeloma and monoclonal gammopathy of undetermined significance. Clin Cancer Res. 2005;11(20):7297–303.PubMedCrossRefGoogle Scholar
  22. 22.
    Sebti Y, Le Maux A, Gros F, De Guibert S, Pangault C, Rouas-Freiss N, et al. Expression of functional soluble human leucocyte antigen-G molecules in lymphoproliferative disorders. Br J Haematol. 2007;138(2):202–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Maki G, Hayes GM, Naji A, Tyler T, Carosella ED, Rouas-Freiss N, et al. NK resistance of tumor cells from multiple myeloma and chronic lymphocytic leukemia patients: implication of HLA-G. Leukemia. 2008;22(5):998–1006.PubMedCrossRefGoogle Scholar
  24. 24.
    Yan WH. HLA-G expression in hematologic malignancies. Expert Rev Hematol. 2010;3(1):67–80.PubMedCrossRefGoogle Scholar
  25. 25.
    Dong DD, Yang H, Li K, Xu G, Song LH, Fan XL, et al. Human leukocyte antigen-G (HLA-G) expression in cervical lesions: association with cancer progression, HPV 16/18 infection, and host immune response. Reprod Sci. 2010;17(8):718–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Basta P, Galazka K, Mach P, Jozwicki W, Walentowicz M, Wicherek L. The immunohistochemical analysis of RCAS1, HLA-G, and B7H4-positive macrophages in partial and complete hydatidiform mole in both applied therapeutic surgery and surgery followed by chemotherapy. Am J Reprod Immunol. 2011;65(2):164–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Kren L, Muckova K, Lzicarova E, Sova M, Vybihal V, Svoboda T, et al. Production of immune-modulatory nonclassical molecules HLA-G and HLA-E by tumor infiltrating ameboid microglia/macrophages in glioblastomas: a role in innate immunity? J Neuroimmunol. 2010;220(1–2):131–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Pangault C, Le Friec G, Caulet-Maugendre S, Léna H, Amiot L, Guilloux V, et al. Lung macrophages and dendritic cells express HLA-G molecules in pulmonary diseases. Hum Immunol. 2002;63(2):83–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Lefebvre S, Antoine M, Uzan S, McMaster M, Dausset J, Carosella ED, et al. Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J Pathol. 2002;196(3):266–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Pangault C, Amiot L, Caulet-Maugendre S, Brasseur F, Burtin F, Guilloux V, et al. HLA-G protein expression is not induced during malignant transformation. Tissue Antigens. 1999;53(4 Pt 1):335–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Kleinberg L, Flørenes VA, Skrede M, Dong HP, Nielsen S, McMaster MT, et al. Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 2006;449(1):31–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Gonzalez A, Alegre E, Arroyo A, Lemaoult J, Echeveste JI. Identification of circulating nonclassic human leukocyte antigen g (HLA-G)-like molecules in exudates. Clin Chem. 2011. doi: 10.1373/clinchem.2010.159673.
  33. 33.
    de Kruijf EM, Sajet A, van Nes JG, Natanov R, Putter H, Smit VT, et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol. 2010;185(12):7452–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Schütt P, Schütt B, Switala M, Bauer S, Stamatis G, Opalka B, et al. Prognostic relevance of soluble human leukocyte antigen-G and total human leukocyte antigen class I molecules in lung cancer patients. Hum Immunol. 2010;71(5):489–95.PubMedCrossRefGoogle Scholar
  35. 35.
    Du L, Xiao X, Wang C, Zhang X, Zheng N, Wang L, et al. Human leukocyte antigen-G is closely associated with tumor immune escape in gastric cancer by increasing local regulatory T cells. Cancer Sci. 2011;102(7):1272–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Yie SM, Hu Z. Human leukocyte antigen-G (HLA-G) as a marker for diagnosis, prognosis and tumor immune escape in human malignancies. Histol Histopathol. 2011;26(3):409–20.PubMedGoogle Scholar
  37. 37.
    Katzung BG. Basic & clinical pharmacology. A LANGE medical book. Tenthth ed. Singapore: McGraw Hill; 2007.Google Scholar
  38. 38.
    Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, Mc Kenna WG. Abeloff's clinical oncology. 4th ed. Philadelphia: Churchill Livingstone, Elsevier; 2008.Google Scholar
  39. 39.
    Hanna L, Crosby T, Macbeth F. Practical clinical oncology. United Kingdom: Cambridge University; 2008.CrossRefGoogle Scholar
  40. 40.
    Díaz-Lagares A, Alegre E, LeMaoult J, Carosella ED, González A. Nitric oxide produces HLA-G nitration and induces metalloprotease-dependent shedding creating a tolerogenic milieu. Immunology. 2009;126(3):436–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Cabestre FA, Lefebvre S, Moreau P, Rouas-Freiss N, Dausset J, Carosella ED, et al. HLA-G expression: immune privilege for tumour cells? Semin Cancer Biol. 1999;9(1):27–36.PubMedCrossRefGoogle Scholar
  42. 42.
    Rouas-Freiss N, Moreau P, Menier C, Carosella ED. HLA-G in cancer: a way to turn off the immune system. Semin Cancer Biol. 2003;13(5):325–36.PubMedCrossRefGoogle Scholar
  43. 43.
    Zidi I, Ben Amor N. HLA-G as predisposing for metastasis. Med Hypotheses. 2011. doi: 10.1016/j.mehy.2011.03.046.
  44. 44.
    Soliman H, Mediavilla-Varela M, Antonia S. Indoleamine 2,3-dioxygenase: is it an immune suppressor? Cancer J. 2010;16(4):354–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu BT. Development of selective immune tolerance towards the allogeneic fetus during pregnancy: Role of tryptophan catabolites. Int J Mol Med. 2010;25(6):831–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9(10):1269–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Qian F, Villella J, Wallace PK, Mhawech-Fauceglia P, Tario JDJ, Andrews C, et al. Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res. 2009;69(13):5498–504.PubMedCrossRefGoogle Scholar
  48. 48.
    López AS, Alegre E, LeMaoult J, Carosella E, González A. Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Mol Immunol. 2006;43(14):2151–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Le Rond S, Gonzalez A, Gonzalez AS, Carosella ED, Rouas-Freiss N. Indoleamine 2,3 dioxygenase and human leucocyte antigen-G inhibit the T-cell alloproliferative response through two independent pathways. Immunology. 2005;116(3):297–307.PubMedCrossRefGoogle Scholar
  50. 50.
    Zamanakou M, Germenis AE, Karanikas V. Tumor immune escape mediated by indoleamine 2,3-dioxygenase. Immunol Lett. 2007;111(2):69–75.PubMedCrossRefGoogle Scholar
  51. 51.
    Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A, et al. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol. 2009;115(2):185–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Zeng J, Cai S, Yi Y, He Y, Wang Z, Jiang G, et al. Prevention of spontaneous tumor development in a ret transgenic mouse model by ret peptide vaccination with indoleamine 2,3-dioxygenase inhibitor 1-methyl tryptophan. Cancer Res. 2009;69(9):3963–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Vasil'eva ED, Nikolin VP, Popova NA, Lushnikova EL, Kaledin VI. Inhibitor of indoleamine-2,3-dioxygenase 1-methyl-d-tryptophan can stimulate the growth of immunogenic tumors. Bull Exp Biol Med. 2010;149(5):625–7.PubMedCrossRefGoogle Scholar
  54. 54.
    González-Hernandez A, LeMaoult J, Lopez A, Alegre E, Caumartin J, Le Rond S, et al. Linking two immuno-suppressive molecules: indoleamine 2,3 dioxygenase can modify HLA-G cell-surface expression. Biol Reprod. 2005;73(3):571–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Jia L, Schweikart K, Tomaszewski J, Page JG, Noker PE, Buhrow SA, et al. Toxicology and pharmacokinetics of 1-methyl-d-tryptophan: absence of toxicity due to saturating absorption. Food Chem Toxicol. 2008;46(1):203–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Stokes Z, Chan S. Principles of cancer treatment by hormone therapy. Surgery (Oxford). 2003;21(11):280–3.CrossRefGoogle Scholar
  57. 57.
    He X, Dong DD, Yie SM, Yang H, Cao M, Ye SR, et al. HLA-G expression in human breast cancer: implications for diagnosis and prognosis, and effect on allocytotoxic lymphocyte response after hormone treatment in vitro. Ann Surg Oncol. 2010;17(5):1459–69.PubMedCrossRefGoogle Scholar
  58. 58.
    Yie SM, Xiao R, Librach CL. Progesterone regulates HLA-G gene expression through a novel progesterone response element. Hum Reprod. 2006;21(10):2538–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Moreau P, Faure O, Lefebvre S, Ibrahim EC, O’Brien M, Gourand L, et al. Glucocorticoid hormones upregulate levels of HLA-G transcripts in trophoblasts. Transplant Proc. 2001;33(3):2277–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Wilczyński JR. Cancer and pregnancy share similar mechanisms of immunological escape. Chemotherapy. 2006;52(3):107–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin Proc. 2009;84(11):985–1000.PubMedCrossRefGoogle Scholar
  62. 62.
    Akhter A, Das V, Naik S, Faridi RM, Pandey A, Agrawal S. Upregulation of HLA-G in JEG-3 cells by dexamethasone and hydrocortisone. Arch Gynecol Obstet. 2011. doi: 10.1007/s00404-011-1880-3.
  63. 63.
    Onno M, Le Friec G, Pangault C, Amiot L, Guilloux V, Drenou B, et al. Modulation of HLA-G antigens expression in myelomonocytic cells. Hum Immunol. 2000;61:1086–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Rebmann V, Regel J, Stolke D, Grosse-Wilde H. Secretion of sHLA-G molecules in malignancies. Semin Cancer Biol. 2003;13:371–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Ugurel S, Rebmann V, Ferrone S, Tilgen W, Grosse-Wilde H, Reinhold U. Soluble human leukocyte antigen-G serum level is elevated in melanoma patients and is further increased by interferon-alpha immunotherapy. Cancer. 2001;92(2):369–76.PubMedCrossRefGoogle Scholar
  66. 66.
    Wagner SN, Rebmann V, Willers CP, Grosse-Wilde H, Goos M. Expression analysis of classic and non-classic HLA molecules before interferon alfa-2b treatment of melanoma. Lancet. 2000;356(9225):220–1.PubMedCrossRefGoogle Scholar
  67. 67.
    Cross JC, Lam S, Yagel S, Werb Z. Defective induction of the transcription factor interferon-stimulated gene factor-3 and interferon alpha insensitivity in human trophoblast cells. Biol Reprod. 1999;60(2):312–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Fraker DL, Alexander H, Andrich M, Rosenberg S. Treatment of patients with melanoma of the extremity using hyperthermic isolated limb perfusion with melphalan, tumor necrosis factor, and interferon gamma: results of a tumor necrosis factor dose escalation study. J Clin Oncol. 1996;14:479–89.PubMedGoogle Scholar
  69. 69.
    Alexander HR, Bartlett DL, Libutti SK, Fraker DL, Moser T, Rosenberg SA. Isolated hepatic perfusion with tumor necrosis factor and melphalan for unresectable cancers confined to the liver. J Clin Oncol. 1998;16:1479–89.PubMedGoogle Scholar
  70. 70.
    Eggermont A, de Wilt J, ten Hagen T. Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol. 2003;4:429–37.PubMedCrossRefGoogle Scholar
  71. 71.
    Szlosarek P, Charles KA, Balkwill FR. Tumour necrosis factor-alpha as a tumour promoter. Eur J Cancer. 2006;42(6):745–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Zidi I, Mestiri S, Bartegi A, Ben Amor N. TNF-alpha and its inhibitors in cancer. Med Oncol. 2010;27(2):185–98.PubMedCrossRefGoogle Scholar
  73. 73.
    Zidi I, Guillard C, Marcou C, Krawice-Radanne I, Sangrouber D, Rouas-Freiss N, et al. Increase in HLA-G1 proteolytic shedding by tumor cells: a regulatory pathway controlled by NF-kappaB inducers. Cell Mol Life Sci. 2006;63(22):2669–81.PubMedCrossRefGoogle Scholar
  74. 74.
    Urosevic M, Kempf W, Zagrodnik B, Panizzon R, Burg G, Dummer R. HLA-G expression in basal cell carcinomas of the skin recurring after radiotherapy. Clin Exp Dermatol. 2005;30(4):422–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Michelin S, Gallegos CE, Dubner D, Favier B, Carosella ED. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line. Hum Immunol. 2009;70(12):1010–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Steele VE, Kelloff GJ. Development of cancer chemopreventive drugs based on mechanistic approaches. Mutat Res. 2005;591(1–2):16–23.PubMedGoogle Scholar
  77. 77.
    Leone G, Voso MT, Teofili L, Lübbert M. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin Immunol. 2003;109(1):89–102.PubMedCrossRefGoogle Scholar
  78. 78.
    Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H. Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer. 2008;112(11):2341–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Santos FP, Kantarjian H, Garcia-Manero G, Issa JP, Ravandi F. Decitabine in the treatment of myelodysplastic syndromes. Expert Rev Anticancer Ther. 2010;10(1):9–22.PubMedCrossRefGoogle Scholar
  80. 80.
    Faa G, Crisponi G. Iron chelating agents in clinical practice. Coord Chem Rev. 1999;184:291–310.CrossRefGoogle Scholar
  81. 81.
    Richardson DR. Iron chelators as therapeutic agents for the treatment of cancer. Crit Rev Oncol Hematol. 2002;42(3):267–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Woo KJ, Lee TJ, Park JW, Kwon TK. Desferrioxamine, an iron chelator, enhances HIF-1alpha accumulation via cyclooxygenase-2 signaling pathway. Biochem Biophys Res Commun. 2006;343(1):8–14.PubMedCrossRefGoogle Scholar
  83. 83.
    Mouillot G, Marcou C, Zidi I, Guillard C, Sangrouber D, Carosella ED, et al. Hypoxia modulates HLA-G gene expression in tumor cells. Hum Immunol. 2007;68(4):277–85.PubMedCrossRefGoogle Scholar
  84. 84.
    Polakova K, Bandzuchova E, Tirpakova J, Kuba D, Russ G. Modulation of HLA-G expression. Neoplasma. 2007;54(6):455–62.PubMedGoogle Scholar
  85. 85.
    Pajak B, Orzechowski A, Gajkowska B. Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells. Adv Med Sci. 2007;52:83–8.PubMedGoogle Scholar
  86. 86.
    Pajak B, Gajkowska B, Orzechowski A. Sodium butyrate sensitizes human colon adenocarcinoma COLO 205 cells to both intrinsic and TNF-alpha-dependent extrinsic apoptosis. Apoptosis. 2009;14(2):203–17.PubMedCrossRefGoogle Scholar
  87. 87.
    Cho HJ, Kim SY, Kim KH, Kang WK, Kim JI, Oh ST, et al. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol. 2009;7:49.PubMedCrossRefGoogle Scholar
  88. 88.
    Silva FG, Penido LC, Valente FX, Mendes MC, Rosa DD, Glória MB, et al. Sodium butyrate does not decrease the evolution of precancerous lesions in rats. Acta Cir Bras. 2010;25(6):507–12.PubMedCrossRefGoogle Scholar
  89. 89.
    Moreau P, Mouillot G, Rousseau P, Marcou C, Dausset J, Carosella ED. HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA. 2003;100(3):1191–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Chang CC, Murphy SP, Ferrone S. Differential in vivo and in vitro HLA-G expression in melanoma cells: potential mechanisms. Hum Immunol. 2003;64(11):1057–63.PubMedCrossRefGoogle Scholar
  91. 91.
    Emonds E, Fitzner B, Jaster R. Molecular determinants of the antitumor effects of trichostatin A in pancreatic cancer cells. World J Gastroenterol. 2010;16(6):1970–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang F, Zhang T, Teng ZH, Zhang R, Wang JB, Mei QB. Sensitization to gamma-irradiation-induced cell cycle arrest and apoptosis by the histone deacetylase inhibitor trichostatin A in non-small cell lung cancer (NSCLC) cells. Cancer Biol Ther. 2009;8(9):823–31.PubMedCrossRefGoogle Scholar
  93. 93.
    Wu ZQ, Zhang R, Chao C, Zhang JF, Zhang YQ. Histone deacetylase inhibitor trichostatin A induced caspase-independent apoptosis in human gastric cancer cell. Chin Med J (Engl). 2007;120(23):2112–8.Google Scholar
  94. 94.
    Zidi I, Ben Amor N. Nanoparticles targeting HLA-G for gene therapy in cancer. Med Oncol. 2011. doi: 10.1007/s12032-011-9942-8.
  95. 95.
    Hansel DE, Rahman A, Wilentz RE, Shih IM, McMaster MT, Yeo CJ, et al. HLA-G upregulation in pre-malignant and malignant lesions of the gastrointestinal tract. Int J Gastrointest Cancer. 2005;35(1):15–23.PubMedCrossRefGoogle Scholar
  96. 96.
    Aractingi S, Kanitakis J, Euvrard S, Le Danff C, Carosella ED. Selective expression of HLA-G in malignant and premalignant skin specimens in kidney transplant recipients. Int J Cancer. 2003;106(2):232–5.PubMedCrossRefGoogle Scholar
  97. 97.
    El-Chennawi FA, Auf FA, El-Diasty AM, El-Daim MA, El-Sherbiny SM, Ali A, et al. Expression of HLA-G in cancer bladder. Egypt J Immunol. 2005;12(1):57–64.PubMedGoogle Scholar
  98. 98.
    Pistoia V, Morandi F, Wang X, Ferrone S. Soluble HLA-G: Are they clinically relevant? Semin Cancer Biol. 2007;17(6):469–79.PubMedCrossRefGoogle Scholar
  99. 99.
    Ye SR, Yang H, Li K, Dong DD, Lin XM, Yie SM. Human leukocyte antigen G expression: as a significant prognostic indicator for patients with colorectal cancer. Mod Pathol. 2007;20(3):375–83.PubMedCrossRefGoogle Scholar
  100. 100.
    Fukushima Y, Oshika Y, Nakamura M, Tokunaga T, Hatanaka H, Abe Y, et al. Increased expression of human histocompatibility leukocyte antigen-G in colorectal cancer cells. Int J Mol Med. 1998;2(3):349–51.PubMedGoogle Scholar
  101. 101.
    Barrier BF, Kendall BS, Sharpe-Timms KL, Kost ER. Characterization of human leukocyte antigen-G (HLA-G) expression in endometrial adenocarcinoma. Gynecol Oncol. 2006;103(1):25–30.PubMedCrossRefGoogle Scholar
  102. 102.
    Bijen CB, Bantema-Joppe EJ, de Jong RA, Leffers N, Mourits MJ, Eggink HF, et al. The prognostic role of classical and nonclassical MHC class I expression in endometrial cancer. Int J Cancer. 2010;126(6):1417–27.PubMedGoogle Scholar
  103. 103.
    Lin A, Zhang X, Zhou WJ, Ruan YY, Xu DP, Wang Q, Yan WH (2010) HLA-G expression is associated with a poor prognosis in patients with esophageal squamous cell carcinoma. Int J Cancer [Epub ahead of print]Google Scholar
  104. 104.
    Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. Expression of HLA-G is associated with prognosis in esophageal squamous cell carcinoma. Am J Clin Pathol. 2007;128(6):1002–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. Expression of human leukocyte antigen G (HLA-G) correlates with poor prognosis in gastric carcinoma. Ann Surg Oncol. 2007;14(10):2721–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Wiendl H, Mitsdoerffer M, Hofmeister V, Wischhusen J, Bornemann A, Meyermann R, et al. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J Immunol. 2002;168(9):4772–80.PubMedGoogle Scholar
  107. 107.
    Adrián Cabestré F, Moreau P, Riteau B, Ibrahim EC, Le Danff C, Dausset J, et al. HLA-G expression in human melanoma cells: protection from NK cytolysis. J Reprod Immunol. 1999;43(2):183–93.PubMedCrossRefGoogle Scholar
  108. 108.
    Fang X, Zhang X, Li J. Up-regulation of human leukocyte antigen G expression in primary cutaneous malignant melanoma associated with host-vs-tumor immune response. J Huazhong Univ Sci Technolog Med Sci. 2008;28(2):219–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Ibrahim EC, Aractingi S, Allory Y, Borrini F, Dupuy A, Duvillard P, et al. Analysis of HLA antigen expression in benign and malignant melanocytic lesions reveals that upregulation of HLA-G expression correlates with malignant transformation, high inflammatory infiltration and HLA-A1 genotype. Int J Cancer. 2004;108(2):243–50.PubMedCrossRefGoogle Scholar
  110. 110.
    Paul P, Rouas-Freiss N, Khalil-Daher I, Moreau P, Riteau B, Le Gal FA, et al. HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci USA. 1998;95(8):4510–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Paul P, Cabestré FA, Le Gal FA, Khalil-Daher I, Le Danff C, Schmid M, et al. Heterogeneity of HLA-G gene transcription and protein expression in malignant melanoma biopsies. Cancer Res. 1999;59(8):1954–60.PubMedGoogle Scholar
  112. 112.
    Rebmann V, Wagner S, Grosse-Wilde H. HLA-G expression in malignant melanoma. Semin Cancer Biol. 2007;17(6):422–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Lin A, Zhu CC, Chen HX, Chen BF, Zhang X, Zhang JG, et al. Clinical relevance and functional implications for human leucocyte antigen-G expression in non-small-cell lung cancer. J Cell Mol Med. 2010;14(9):2318–29.PubMedCrossRefGoogle Scholar
  114. 114.
    Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM. Expression of human leucocyte antigen G (HLA-G) is associated with prognosis in non-small cell lung cancer. Lung Cancer. 2007;58(2):267–74.PubMedCrossRefGoogle Scholar
  115. 115.
    Menier C, Prevot S, Carosella ED, Rouas-Freiss N. Human leukocyte antigen-G is expressed in advanced-stage ovarian carcinoma of high-grade histology. Hum Immunol. 2009;70(12):1006–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Ibrahim EC, Guerra N, Lacombe MJ, Angevin E, Chouaib S, Carosella ED, et al. Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma. Cancer Res. 2001;61(18):6838–45.PubMedGoogle Scholar
  117. 117.
    Li BL, Lin A, Zhang XJ, Zhang X, Zhang JG, Wang Q, et al. Characterization of HLA-G expression in renal cell carcinoma. Tissue Antigens. 2009;74(3):213–21.PubMedCrossRefGoogle Scholar
  118. 118.
    Polakova K, Bandzuchova E, Sabty FA, Mistrik M, Demitrovicova L, Russ G. Activation of HLA-G expression by 5-aza-2-deoxycytidine in malignant hematopoetic cells isolated from leukemia patients. Neoplasma. 2009;56(6):514–20.PubMedCrossRefGoogle Scholar
  119. 119.
    Mizuno S, Emi N, Kasai M, Ishitani A, Saito H. Aberrant expression of HLA-G antigen in interferon gamma-stimulated acute myelogenous leukaemia. Br J Haematol. 2000;111(1):280–2.PubMedCrossRefGoogle Scholar
  120. 120.
    Gros F, Sebti Y, de Guibert S, Branger B, Bernard M, Fauchet R, et al. Soluble HLA-G molecules increase during acute leukemia, especially in subtypes affecting monocytic and lymphoid lineages. Neoplasia. 2006;8(3):223–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Menendez L, Walker LD, Matyunina LV, Totten KA, Benigno BB, McDonald JF. Epigenetic changes within the promoter region of the HLA-G gene in ovarian tumors. Mol Cancer. 2008;7:43.PubMedCrossRefGoogle Scholar
  122. 122.
    Bukur J, Seliger B. The role of HLA-G for protection of human renal cell-carcinoma cells from immune-mediated lysis: implications for immunotherapies. Semin Cancer Biol. 2003;13(5):353–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Sebti Y, Le Friec G, Pangault C, Gros F, Drénou B, Guilloux V, et al. Soluble HLA-G molecules are increased in lymphoproliferative disorders. Hum Immunol. 2003;64(11):1093–101.PubMedCrossRefGoogle Scholar
  124. 124.
    Mouillot G, Marcou C, Rousseau P, Rouas-Freiss N, Carosella ED, Moreau P. HLA-G gene activation in tumor cells involves cis-acting epigenetic changes. Int J Cancer. 2005;113(6):928–36.PubMedCrossRefGoogle Scholar
  125. 125.
    Lefebvre S, Berrih-Aknin S, Adrian F, Moreau P, Poea S, Gourand L, et al. A specific interferon (IFN)-stimulated response element of the distal HLA-G promoter binds IFN-regulatory factor 1 and mediates enhancement of this nonclassical class I gene by IFN-beta. J Biol Chem. 2001;276(9):6133–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Shido F, Ito T, Nomura S, Yamamoto E, Sumigama S, Ino K, et al. Endoplasmic reticulum aminopeptidase-1 mediates leukemia inhibitory factor-induced cell surface human leukocyte antigen-G expression in JEG-3 choriocarcinoma cells. Endocrinology. 2006;147(4):1780–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Bamberger AM, Jenatschke S, Schulte HM, Löning T, Bamberger MC. Leukemia inhibitory factor (LIF) stimulates the human HLA-G promoter in JEG3 choriocarcinoma cells. J Clin Endocrinol Metab. 2000;85(10):3932–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Ibrahim EC, Morange M, Dausset J, Carosella ED, Paul P. Heat shock and arsenite induce expression of the nonclassical class I histocompatibility HLA-G gene in tumor cell lines. Cell Stress Chaperones. 2000;5(3):207–18.PubMedCrossRefGoogle Scholar
  129. 129.
    Amiot L, Onno M, Drénou B, Monvoisin C, Fauchet R. HLA-G class I gene expression in normal and malignant hematopoietic cells. Hum Immunol. 1998;59(8):524–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Poláková K, Bandzuchová E, Kuba D, Russ G. Demethylating agent 5-aza-2'-deoxycytidine activates HLA-G expression in human leukemia cell lines. Leuk Res. 2009;33(4):518–24.PubMedCrossRefGoogle Scholar
  131. 131.
    Frumento G, Franchello S, Palmisano GL, Nicotra MR, Giacomini P, Loke YW, et al. Melanomas and melanoma cell lines do not express HLA-G, and the expression cannot be induced by gammaIFN treatment. Tissue Antigens. 2000;56(1):30–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Yan WH, Lin AF, Chang CC, Ferrone S. Induction of HLA-G expression in a melanoma cell line OCM-1A following the treatment with 5-aza-2'-deoxycytidine. Cell Res. 2005;15(7):523–31.PubMedCrossRefGoogle Scholar
  133. 133.
    Dunker K, Schlaf G, Bukur J, Altermann WW, Handke D, Seliger B. Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens. 2008;72(2):137–48.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  1. 1.Sciences CollegeKing Faisal UniversityAl-AhsaSaudi Arabia
  2. 2.Laboratory of Biochemistry, Research Unit 02/UR/09-01Higher Institute of Biotechnology of MonastirMonastirTunisia

Personalised recommendations