Advertisement

Tumor Biology

, Volume 32, Issue 4, pp 787–799 | Cite as

The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer

  • Ja Seung Koo
  • Seho Park
  • Seung Il Kim
  • Sarah Lee
  • Byeong-Woo Park
Research Article

Abstract

We aimed to investigate the expression of caveolin-1, -2, -3, and platelet-derived growth factor (PDGF) β receptor in breast cancer cells and stroma by immunohistochemistry and to analyze their implications. The expression rates of stromal caveolin-2 and PDGF β receptor increased as the tumor progressed from ductal carcinoma in situ to microinvasive ductal carcinoma, intraductal component of invasive ductal carcinoma (IDC), and IDC (p < 0.001). The expression loss of caveolin-1 in tumor stroma of IDC correlated with high tumor stage (p < 0.001), high nodal stage (p = 0.011), high cancer stage (p = 0.005), estrogen receptor negativity (p = 0.003), and tumor recurrence (p = 0.003). In addition, the expression loss of caveolin-1 in tumor stroma was correlated with a shorter disease-free survival and an overall survival (p < 0.001). In conclusion, the loss of stromal caveolin-1 is related to poor prognosis in IDC.

Keywords

Breast cancer Caveolin Immunohistochemistry Stroma 

Notes

Conflicts of interest

None

References

  1. 1.
    Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):46–54. doi: 10.1038/35094059.PubMedCrossRefGoogle Scholar
  2. 2.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. doi: 10.1038/nrc1877.PubMedCrossRefGoogle Scholar
  3. 3.
    Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432(7015):332–7. doi: 10.1038/nature03096.PubMedCrossRefGoogle Scholar
  4. 4.
    Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004;4(11):839–49. doi: 10.1038/nrc1477.PubMedCrossRefGoogle Scholar
  5. 5.
    Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5(15):1597–601.PubMedCrossRefGoogle Scholar
  6. 6.
    Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25(1):30–8. doi: 10.1016/j.tig.2008.10.012.PubMedCrossRefGoogle Scholar
  7. 7.
    Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11(1):R7. doi: 10.1186/bcr2222.PubMedCrossRefGoogle Scholar
  8. 8.
    Mercier I, Casimiro MC, Wang C, Rosenberg AL, Quong J, Minkeu A, et al. Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther. 2008;7(8):1212–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res. 1999;250(2):273–83. doi: 10.1006/excr.1999.4543.PubMedCrossRefGoogle Scholar
  10. 10.
    Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat. 2009;114(1):47–62. doi: 10.1007/s10549-008-9982-8.PubMedCrossRefGoogle Scholar
  11. 11.
    Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994;4(7):231–5. doi: 10.1016/0962-8924(94)90114-7.PubMedCrossRefGoogle Scholar
  12. 12.
    Lisanti MP, Tang Z, Scherer PE, Kubler E, Koleske AJ, Sargiacomo M. Caveolae, transmembrane signalling and cellular transformation. Mol Membr Biol. 1995;12(1):121–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Sotgia F, Del Galdo F, Casimiro MC, Bonuccelli G, Mercier I, Whitaker-Menezes D, et al. Caveolin-1−/− null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts. Am J Pathol. 2009;174(3):746–61. doi: 10.2353/ajpath.2009.080658.PubMedCrossRefGoogle Scholar
  14. 14.
    Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009;174(6):2023–34. doi: 10.2353/ajpath.2009.080873.PubMedCrossRefGoogle Scholar
  15. 15.
    Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, et al. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol. 2009;174(6):2035–43. doi: 10.2353/ajpath.2009.080924.PubMedCrossRefGoogle Scholar
  16. 16.
    Witkiewicz AK, Dasgupta A, Nguyen KH, Liu C, Kovatich AJ, Schwartz GF, et al. Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther. 2009;8(11):1071–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Paulsson J, Sjoblom T, Micke P, Ponten F, Landberg G, Heldin CH, et al. Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol. 2009;175(1):334–41. doi: 10.2353/ajpath.2009.081030.PubMedCrossRefGoogle Scholar
  18. 18.
    Witkiewicz AK, Casimiro MC, Dasgupta A, Mercier I, Wang C, Bonuccelli G, et al. Towards a new “stromal-based” classification system for human breast cancer prognosis and therapy. Cell Cycle. 2009;8(11):1654–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9(16):3256–76. doi: 10.4161/cc.9.16.12553.PubMedCrossRefGoogle Scholar
  21. 21.
    Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: a transcriptional informatics analysis with validation. Cell Cycle. 2010;9(11):2201–19.CrossRefGoogle Scholar
  22. 22.
    Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal–epithelial metabolic coupling. Cell Cycle. 2010;9(12):2412–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010;9(12):2423–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Elsheikh SE, Green AR, Rakha EA, Samaka RM, Ammar AA, Powe D, et al. Caveolin 1 and caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer. 2008;99(2):327–34. doi: 10.1038/sj.bjc.6604463.PubMedCrossRefGoogle Scholar
  25. 25.
    Pinilla SM, Honrado E, Hardisson D, Benitez J, Palacios J. Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat. 2006;99(1):85–90. doi: 10.1007/s10549-006-9184-1.PubMedCrossRefGoogle Scholar
  26. 26.
    Savage K, Lambros MB, Robertson D, Jones RL, Jones C, Mackay A, et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res. 2007;13(1):90–101. doi: 10.1158/1078-0432.CCR-06-1371.PubMedCrossRefGoogle Scholar
  27. 27.
    Peterson TE, Guicciardi ME, Gulati R, Kleppe LS, Mueske CS, Mookadam M, et al. Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol. 2003;23(9):1521–7. doi: 10.1161/01.atv.0000081743.35125.05.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamamoto M, Toya Y, Jensen RA, Ishikawa Y. Caveolin is an inhibitor of platelet-derived growth factor receptor signaling. Exp Cell Res. 1999;247(2):380–8. doi: 10.1006/excr.1998.4379.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2011

Authors and Affiliations

  • Ja Seung Koo
    • 1
  • Seho Park
    • 2
  • Seung Il Kim
    • 2
  • Sarah Lee
    • 1
  • Byeong-Woo Park
    • 2
  1. 1.Department of PathologyYonsei University College of MedicineSeoulSouth Korea
  2. 2.Department of Surgery, Severance HospitalYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations