Tumor Biology

, Volume 32, Issue 3, pp 561–568 | Cite as

Identification of differential expressed transcripts in cervical cancer of Mexican patients

  • Leticia Santos
  • Ma. Fabiola León-Galván
  • Erika Nahomy Marino-Marmolejo
  • Ana Paulina Barba de la Rosa
  • Antonio De León Rodríguez
  • Roberto González-Amaro
  • Ramón Gerardo Guevara-González
Research Article


The aim of this study was to identify the gene expression profile in biopsies of patients with cervical intraepithelial neoplasia (CIN) 1, CIN 2, CIN 3, and microinvasive cancer by suppression subtractive hybridization and Southern blotting. After analyzing 1,800 cDNA clones, we found 198 upregulated genes, 166 downregulated, and no significant change of gene expression in 86 clones (p = 0.005). These results were validated by Northern blot analysis (p = 0.0001) in the identification of 28 overexpressed and 7 downregulated transcripts. We observed a set of genes related to the Notch signaling pathway that may be involved in the transformation of cervical cells and in the development to malignancy. The differentially expressed genes may provide useful information about the molecular mechanisms involved in human cervical carcinoma and as diagnostic markers.


Cervical cancer SSH Gene expression Mexican women 



We thank Mrs. Sydney Robertson Jiménez for the English correction of the manuscript.

Conflicts of interest



  1. 1.
    Munoz N, Bosch FX, de Sanjose S, Shah KV. The role of HPV in the etiology of cervical cancer. Mutat Res. 1994;305:293–301.PubMedGoogle Scholar
  2. 2.
    Bosch FX, de Sanjose S. Human papillomavirus in cervical cancer. Curr Oncol Rep. 2002;4:175–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Bosch FX, de Sanjose S. The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers. 2007;23:213–27.PubMedGoogle Scholar
  4. 4.
    Bosch FX, Munoz N, Shah KV, Meheus A. Second International Workshop on the Epidemiology of Cervical Cancer and Human Papillomaviruses. Int J Cancer. 1992;52:171–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Herrero R, Brinton LA, Reeves WC, Brenes MM, de Britton RC, et al. Screening for cervical cancer in Latin America: a case–control study. Int J Epidemiol. 1992;21:1050–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Herrero R, Brinton LA, Reeves WC, Brenes MM, Tenorio F, et al. Risk factors for invasive carcinoma of the uterine cervix in Latin America. Bull Pan Am Health Organ. 1990;24:263–83.PubMedGoogle Scholar
  7. 7.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Min W, Wen-li M, Zhao-hui S, Ling L, Bao Z, Wen-ling Z. Microarray analysis identifies differentially expressed genes induced by human papillomavirus type 18 e6 silencing rNA. Int J Gynecol Cancer. 2009;19:547–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim TJ, Choi JJ, Kim WY, Choi CH, Lee JW, et al. Gene expression profiling for the prediction of lymph node metastasis in patients with cervical cancer. Cancer Sci. 2008;99:31–8.PubMedGoogle Scholar
  10. 10.
    Kendrick JE, Conner MG, Huh WK. Gene expression profiling of women with varying degrees of cervical intraepithelial neoplasia. J Low Genit Tract Dis. 2007;11:25–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Wong YF, Cheung TH, Lo KW, Wang VW, Chan CS, et al. Protein profiling of cervical cancer by protein-biochips: proteomic scoring to discriminate cervical cancer from normal cervix. Cancer Lett. 2004;211:227–34.PubMedCrossRefGoogle Scholar
  12. 12.
    de la Barba Rosa APL-MO, Briones-Cerecero EP, Chagolla-López A, De León-Rodríguez A, Santos L, et al. Analysis of human serum from women affected by cervical lesions. J Exp Ther Oncol. 2008;7:65–72.Google Scholar
  13. 13.
    Gius D, Funk MC, Chuang EY, Feng S, Huettner PC, et al. Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates. Cancer Res. 2007;67:7113–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Unger ER, Steinau M, Rajeevan MS, Swan D, Lee DR, Vernon SD. Molecular markers for early detection of cervical neoplasia. Dis Markers. 2004;20:103–16.PubMedGoogle Scholar
  15. 15.
    Davelaar EM, van de Lande J, von Mensdorff-Pouilly S, Blankenstein MA, Verheijen RH, Kenemans P. A combination of serum tumor markers identifies high-risk patients with early-stage squamous cervical cancer. Tumour Biol. 2008;29:9–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Miele L. Rational targeting of notch signaling in breast cancer. Expert Rev Anticancer Ther. 2008;8:1197–201.PubMedCrossRefGoogle Scholar
  17. 17.
    Rizzo P, Osipo C, Foreman K, Golde T, Osborne B, Miele L. Rational targeting of notch signaling in cancer. Oncogene. 2008;27:5124–31.PubMedCrossRefGoogle Scholar
  18. 18.
    Miele L, Miao H, Nickoloff BJ. Notch signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets. 2006;6:313–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Miele L, Rizzo P, Osipo C, Foreman K, Bocchetta M, Tonetti D. Notch as a potential therapeutic target in cancer. EJC Supplements. 2008;6:4.Google Scholar
  20. 20.
    Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22:6598–608.PubMedCrossRefGoogle Scholar
  21. 21.
    Cao W, Epstein C, Liu H, DeLoughery C, Ge N, et al. Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study. BMC Genomics. 2004;5:26.PubMedCrossRefGoogle Scholar
  22. 22.
    Burd E. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16:1–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Nees M, Geoghegan JM, Munson P, Prabhu V, Liu Y, et al. Human papillomavirus type 16 e6 and e7 proteins inhibit differentiation-dependent expression of transforming growth factor-beta2 in cervical keratinocytes. Cancer Res. 2000;60:4289–98.PubMedGoogle Scholar
  24. 24.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.PubMedGoogle Scholar
  25. 25.
    Cheng Q, Lau WM, Tay SK, Chew SH, Ho TH, Hui KM. Identification and characterization of genes involved in the carcinogenesis of human squamous cell cervical carcinoma. Int J Cancer. 2002;98:419–26.PubMedCrossRefGoogle Scholar
  26. 26.
    de Wilde J, Wilting SM, Meijer CJ, van de Wiel MA, Ylstra B, et al. Gene expression profiling to identify markers associated with deregulated hTERT in HPV-transformed keratinocytes and cervical cancer. Int J Cancer. 2008;122:877–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Gulliksen A, Karlsen F. Microchips for the diagnosis of cervical cancer. Methods Mol Biol. 2007;385:65–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Martin CM, Astbury K, McEvoy L, O’Toole S, Sheils O, O’Leary JJ. Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy. Methods Mol Biol. 2009;511:333–59.PubMedCrossRefGoogle Scholar
  29. 29.
    Rishi AK, Zhang L, Yu Y, Jiang Y, Nautiyal J, et al. Cell cycle- and apoptosis-regulatory protein-1 is involved in apoptosis signaling by epidermal growth factor receptor. J Biol Chem. 2006;281:13188–98.PubMedCrossRefGoogle Scholar
  30. 30.
    Broggini M, Buraggi G, Brenna A, Riva L, Codegoni AM, et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 2000;20:4835–40.PubMedGoogle Scholar
  31. 31.
    Loffler H, Syljuasen RG, Bartkova J, Worm J, Lukas J, Bartek J. Distinct modes of deregulation of the proto-oncogenic CDC25A phosphatase in human breast cancer cell lines. Oncogene. 2003;22:8063–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Vacca A, Felli MP, Palermo R, Di Mario G, Calce A, et al. Notch3 and pre-TCR interaction unveils distinct NF-kappab pathways in T-cell development and leukemia. EMBO J. 2006;25:1000–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bellavia D, Campese AF, Checquolo S, Balestri A, Biondi A, et al. Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci USA. 2002;99:3788–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Park JT, Li M, Nakayama K, Mao TL, Davidson B, et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 2006;66:6312–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang T, Holt CM, Xu C, Ridley C, Jones PO, et al. Notch3 activation modulates cell growth behaviour and cross-talk to Wnt/TCF signalling pathway. Cell Signal. 2007;19:2458–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Song LL, Peng Y, Yun J, Rizzo P, Chaturvedi V, et al. Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene. 2008;27:5833–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang XY, DeSalle LM, Patel JH, Capobianco AJ, Yu D, et al. Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc Natl Acad Sci USA. 2005;102:13968–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Sun Y, Wu J, Wu SH, Thakur A, Bollig A, et al. Expression profile of microRNAs in c-MYC induced mouse mammary tumors. Breast Cancer Res Treat. 2009;118:185–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Wu CH, Sahoo D, Arvanitis C, Bradon N, Dill DL, Felsher DW. Combined analysis of murine and human microarrays and chip analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet. 2008;4:e1000090.PubMedCrossRefGoogle Scholar
  40. 40.
    Subramanyam D, Krishna S. C-MYC substitutes for Notch1-CBF1 functions in cooperative transformation with papillomavirus oncogenes. Virology. 2006;347:191–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Zagouras PSS, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA. 1995;92:6414–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Daniel B, Rangarajan A, Mukherjee G, Vallikad E, Krishna S. The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J Gen Virol. 1997;78:1095–101.PubMedGoogle Scholar
  43. 43.
    Srivastava S, Ramdass B, Nagarajan S, Rehman M, Mukherjee G, Krishna S. Notch1 regulates the functional contribution of RhoC to cervical carcinoma progression. Br J Cancer. 2010;102:196–205.PubMedCrossRefGoogle Scholar
  44. 44.
    Talora C, Cialfi S, Segatto O, Morrone S, Kim Choi J, et al. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways. Exp Cell Res. 2005;305:343–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Talora C, Sgroi DC, Crum CP, Dotto GP. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-e6/e7 expression and late steps of malignant transformation. Genes Dev. 2002;16:2252–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang L, Qin H, Chen B, Xin X, Li J, Han H. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int J Gynecol Cancer. 2007;17:1283–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Ding LC, She L, Zheng DL, Huang QL, Wang JF, et al. Notch-4 contributes to the metastasis of salivary adenoid cystic carcinoma. Oncol Rep. 2010;24:363–8.PubMedGoogle Scholar
  48. 48.
    Zheng M, Zhang Z, Zhao X, Ding Y, Han H. The Notch signaling pathway in retinal dysplasia and retina vascular homeostasis. J Genet Genomics. 2010;37:573–82.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2010

Authors and Affiliations

  • Leticia Santos
    • 1
    • 4
  • Ma. Fabiola León-Galván
    • 1
  • Erika Nahomy Marino-Marmolejo
    • 1
  • Ana Paulina Barba de la Rosa
    • 1
  • Antonio De León Rodríguez
    • 1
  • Roberto González-Amaro
    • 2
  • Ramón Gerardo Guevara-González
    • 3
  1. 1.División de Biologia Molecular, Instituto Potosino de Investigación Cientifica y Tecnologica A.C. (IPICYT)San Luis PotosiMexico
  2. 2.Departamento de Inmunología, Facultad de Medicina, UASLPSan Luis PotosíMexico
  3. 3.Departamento de Ingeniería Bioquímica, Instituto Tecnológico de CelayaCelayaMexico
  4. 4.San Luis PotosiMexico

Personalised recommendations