Skip to main content

Advertisement

Log in

Expressions of hypoxia-inducible factor-1α and hexokinase-II in gastric adenocarcinoma: the impact on prognosis and correlation to clinicopathologic features

  • Research Article
  • Published:
Tumor Biology

Abstract

The impact of hypoxia-inducible factor (HIF)-1α and hexokinase-II (HK-II) expression on prognosis of gastric adenocarcinoma patients has not been clearly established. We identified all patients in Cancer Center of Sun Yat-Sen University who were diagnosed as gastric adenocarcinoma and underwent radical gastrectomy between January 1999 and December 2001. We used immunohistochemistry to determine the expressions of HIF-1α protein and HK-II in the surgical sections. We identified 188 patients with gastric adenocarcinoma for the final analysis. The positive rate of HIF-1α and HK-II were 110/188 (54.6%) and 40/188 (21.3%), respectively. Both HIF-1α and HK-II were all positively correlated with tumor size, lower differentiation, and tumor stage. Univariate analysis showed that advanced tumor stages (P < 0.001), tumor size (P = 0.003), HIF-1α expression (P < 0.001), and HK-II expression (P < 0.001) were all significantly associated with shorter survival. The multivariate Cox analysis revealed that tumor stage (P < 0.001), HIF-1α expression (P < 0.001), and HK-II expression (P = 0.002) remained independent prognostic variables for survival. In addition, there was a positive correlation of HIF-1α protein expression and HK-II (P = 0.022). Both HIF-1α and HK-II were overexpressed in gastric adenocarcinoma. The multivariate Cox analysis revealed that both of them were independent factors on survival of gastric adenocarcinoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;10:2137–50.

    Article  Google Scholar 

  2. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999;24:68–72.

    Article  CAS  PubMed  Google Scholar 

  3. Gatenby RA, Kessler HB, Rosenblum JS, Coia LR, Moldofsky PJ, Hartz WH, et al. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1998;14:831–8.

    Google Scholar 

  4. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor-1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–4.

    Article  CAS  PubMed  Google Scholar 

  5. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12:149–62.

    Article  CAS  PubMed  Google Scholar 

  6. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3:177–82.

    Article  CAS  PubMed  Google Scholar 

  7. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 1999;59:3915–8.

    CAS  PubMed  Google Scholar 

  8. Elson DA, Ryan HE, Snow JW, Johnson R, Arbeit JM. Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes dring multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 2000;60:6189–95.

    CAS  PubMed  Google Scholar 

  9. Stoeltzing O, McCarty MF, Wey JS, Fan F, Liu W, Belcheva A, et al. Role of hypoxia-inducible factor 1 alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. J Natl Cancer Inst. 2004;96:946–56.

    Article  CAS  PubMed  Google Scholar 

  10. Sweeney MJ, Ashmore J, Morris HP, Weber G. Comparative biochemistry hepatomas. IV. isotope studies of glucose and fructose metabolism in liver tumors of different growth rate. Cancer Res. 1963;23:995–1002.

    CAS  PubMed  Google Scholar 

  11. Burk D, Woods M, Hunter J. On the significance of glucolysis for cancer growth, with special reference to Morris rat hepatomas. J Natl Cancer Inst. 1967;38:839–63.

    CAS  PubMed  Google Scholar 

  12. Shinohara Y, Ichihara J, Terada H. Remarkably enhanced expression of the type II hexokinase in rat hepatoma cell line AH130. FEBS Lett. 1991;291:55–7.

    Article  CAS  PubMed  Google Scholar 

  13. Adams V, Kempf W, Hassam S, Briner J. Determination of hexokinase isoenzyme I and II composition by RT-PCR: increased hexokinase isoenzyme II in human renal cell carcinoma. Biochem Mol Med. 1995;54:53–8.

    Article  CAS  PubMed  Google Scholar 

  14. Rempel A, Bannasch P, Mayer D. Differences in expression and intracellular distribution of hexokinase isoenzymes in rat liver cells of different transformation stages. Biochim Biophys Acta. 1994;1219:660–8.

    PubMed  Google Scholar 

  15. Katabi MM, Chan HL, Karp SE, Batist G. HexokinasetypeII: a novel tumor-specific promoter for gene-targeted therapy differentially expressed and regulated in human cancer cells. Hum Gene Ther. 1999;10:155–64.

    Article  CAS  PubMed  Google Scholar 

  16. Ebert BL, Firth JD, Ratcliffe PJ. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem. 1995;270:29083–9.

    Article  CAS  PubMed  Google Scholar 

  17. Mathupala SP, Rempel A, Pedersen PL. Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr. 1997;29:339–43.

    Article  CAS  PubMed  Google Scholar 

  18. Srinivas V, Leshchinsky I, Sang N, King MP, Minchenko A, Caro J. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J Biol Chem. 2001;276:21995–8.

    Article  CAS  PubMed  Google Scholar 

  19. Yasuda S, Arii S, Mori A, Isobe N, Yang W, Oe H, et al. Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance. J Hepatol. 2004;40:117–23.

    Article  CAS  PubMed  Google Scholar 

  20. Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol. 2007;19:223–9.

    Article  CAS  PubMed  Google Scholar 

  21. Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med. 2002;8:S62–7.

    Article  CAS  PubMed  Google Scholar 

  22. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.

    CAS  PubMed  Google Scholar 

  23. Birner P, Gatterbauer B, Oberhuber G, Schindl M, Rössler K, Prodinger A, et al. Expression of hypoxia-inducible factor-1 alpha in oligodendrogliomas: its impact on prognosis and on neoangigenesis. Cancer. 2001;92:165–71.

    Article  CAS  PubMed  Google Scholar 

  24. Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM, et al. Levels of hypoxia-inducible factor-1alpha during breast carcinogenesis. J Natl Cancer Inst. 2001;93:309–14.

    Article  CAS  PubMed  Google Scholar 

  25. Birner P, Schindl M, Obermair A, Breitenecker G, Oberhuber G. Hypoxia-inducible factor 1alpha expression in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res. 2001;7:1661–8.

    CAS  PubMed  Google Scholar 

  26. Matsuyama T, Nakanishi K, Hayashi T, Yoshizumi Y, Aiko S, Sugiura Y, et al. Expression of hypoxia-inducible factor-1alpha in esophageal squamous cell carcinoma. Cancer Sci. 2005;96:176–82.

    Article  CAS  PubMed  Google Scholar 

  27. Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH, et al. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 2001;61:2911–6.

    CAS  PubMed  Google Scholar 

  28. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996;56:941–3.

    CAS  PubMed  Google Scholar 

  29. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–16.

    CAS  PubMed  Google Scholar 

  30. Sumiyoshi Y, Kakeji Y, Egashira A, Mizokami K, Orita H, Maehara Y. Overexpression of hypoxia-inducible factor 1alpha and p53 is a marker for an unfavorable prognosis in gastric cancer. Clin Cancer Res. 2006;12:5112–7.

    Article  CAS  PubMed  Google Scholar 

  31. Koukourakis MI, Giatromanolaki A, Skarlatos J, Corti L, Blandamura S, Piazza M, et al. Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res. 2001;61:1830–2.

    CAS  PubMed  Google Scholar 

  32. Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, et al. Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer. 2003;97:1573–81.

    Article  PubMed  Google Scholar 

  33. Nakanishi K, Hiroi S, Tominaga S, Aida S, Kasamatsu H, Matsuyama S, et al. Expression of hypoxia-inducible factor-1alpha protein predicts survival in patients with transitional cell carcinoma of the upper urinary tract. Clin Cancer Res. 2005;11:2583–90.

    Article  CAS  PubMed  Google Scholar 

  34. Cabuk D, Basaran G, Celikel C, Dane F, Yumuk PF, Iyikesici MS, et al. Vascular endothelial growth factor, hypoxia-inducible factor 1 alpha and CD34 expressions in early-stage gastric tumors: relationship with pathological factors and prognostic impact on survival. Oncology. 2007;72:111–7.

    Article  CAS  PubMed  Google Scholar 

  35. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 2002;277:23111–5.

    Article  CAS  PubMed  Google Scholar 

  36. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta. 2002;1555:14–20.

    Article  CAS  PubMed  Google Scholar 

  37. Rho M, Kim J, Jee CD, Lee YM, Lee HE, Kim MA, et al. Expression of type 2 hexokinase and mitochondria-related genes in gastric carcinoma tissues and cell lines. Anticancer Res. 2007;27:251–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These work was funded by National Natural Science Foundation of China grant 30672408, Guangzhou Bureau of Science and Technology grant 2006Z3-E0041 and Sun Yat-Sen University 985 Program Initiation Fund (China). We gratefully thank the staff members in the Department of Medical Oncology and GI Surgery Oncology at Sun Yat-Sen University Cancer Center for their suggestion and assistance.

Part of the results of this article was present in the 2008 ASCO annual meeting as a poster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-hua Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Mz., Han, B., Luo, Hy. et al. Expressions of hypoxia-inducible factor-1α and hexokinase-II in gastric adenocarcinoma: the impact on prognosis and correlation to clinicopathologic features. Tumor Biol. 32, 159–166 (2011). https://doi.org/10.1007/s13277-010-0109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0109-6

Keywords

Navigation