Tumor Biology

, Volume 32, Issue 1, pp 1–12 | Cite as

TD-11 workshop report: characterization of monoclonal antibodies to S100 proteins

  • Elisabeth Paus
  • Mads Haugland Haugen
  • Kari Hauge Olsen
  • Kjersti Flatmark
  • Gunhild Mari Maelandsmo
  • Olle Nilsson
  • Eva Röijer
  • Maria Lundin
  • Christian Fermér
  • Maria Samsonova
  • Yuri Lebedin
  • Torgny Stigbrand
Research Article

Abstract

Fourteen monoclonal antibodies with specificity against native or recombinant antigens within the S100 family were investigated with regard to immunoreactivity. The specificities of the antibodies were studied using ELISA tests, Western blotting epitope mapping using competitive assays, and QCM technology. The mimotopes of antibodies against S100A4 were determined by random peptide phage display libraries. Antibody specificity was also tested by IHC and pair combinations evaluated for construction of immunoradiometric assays for S100B. Out of the 14 antibodies included in this report eight demonstrated specificity to S100B, namely MAbs 4E3, 4D2, S23, S53, 6G1, S21, S36, and 8B10. This reactivity could be classified into four different epitope groups using competing studies. Several of these MAbs did display minor reactivity to other S100 proteins when they were presented in denatured form. Only one of the antibodies, MAb 3B10, displayed preferential reactivity to S100A1; however, it also showed partial cross-reactivity with S100A10 and S100A13. Three antibodies, MAbs 20.1, 22.3, and S195, were specific for recombinant S100A4 in solution. Western blot revealed that MAb 20.1 and 22.3 recognized linear epitopes of S100A4, while MAb S195 reacted with a conformational dependent epitope. Surprisingly, MAb 14B3 did not demonstrate any reactivity to the panel of antigens used in this study.

Keywords

S100 proteins Monoclonal antibodies Antibody specificities 

References

  1. 1.
    Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J. 2006;396:201–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Schafer BW, Wicki R, Engelkamp D, Mattei MG, Heizmann CW. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics. 1995;25:638–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19:739–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637–68.CrossRefPubMedGoogle Scholar
  5. 5.
    Takahashi K, Isobe T, Ohtsuki Y, Akagi T, Sonobe H, Okuyama T. Immunohistochemical study on the distribution of alpha and beta subunits of S-100 protein in human neoplasm and normal tissues. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;45:385–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37:417–29.CrossRefPubMedGoogle Scholar
  7. 7.
    Martens P, Raabe A, Johnsson P. Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke. 1998;29:2363–6.PubMedGoogle Scholar
  8. 8.
    Rosen H, Rosengren L, Herlitz J, Blomstrand C. Increased serum levels of the S-100 protein are associated with hypoxic brain damage after cardiac arrest. Stroke. 1998;29:473–7.PubMedGoogle Scholar
  9. 9.
    Ingebrigtsen T, Romner B, Marup-Jensen S, Dons M, Lundqvist C, Bellner J, et al. The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Inj. 2000;14:1047–55.CrossRefPubMedGoogle Scholar
  10. 10.
    Michetti F, Gazzolo D. S100B protein in biological fluids: a tool for perinatal medicine. Clin Chem. 2002;48:2097–104.PubMedGoogle Scholar
  11. 11.
    Wunderlich MT, Ebert AD, Kratz T, Goertler M, Jost S, Herrmann M. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke. 1999;30:1190–5.PubMedGoogle Scholar
  12. 12.
    Banfalvi T, Gilde K, Gergye M, Boldizsar M, Kremmer T, Otto S. Use of serum 5-S-CD and S-100B protein levels to monitor the clinical course of malignant melanoma. Eur J Cancer. 2003;39:164–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Martenson ED, Hansson LO, Nilsson B, von Schoultz E, Mansson BE, Ringborg U, et al. Serum S-100b protein as a prognostic marker in malignant cutaneous melanoma. J Clin Oncol. 2001;19:824–31.PubMedGoogle Scholar
  14. 14.
    Hauschild A, Engel G, Brenner W, Glaser R, Monig H, Henze E, et al. S100B protein detection in serum is a significant prognostic factor in metastatic melanoma. Oncology. 1999;56:338–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Stigbrand T, Nyberg L, Ullen A, Haglid K, Sandstrom E, Brundell J. A new specific method for measuring S-100B in serum. Int J Biol Markers. 2000;15:33–40.PubMedGoogle Scholar
  16. 16.
    Goncalves CA, Leite MC, Nardin P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin Biochem. 2008;41:755–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Leite MC, Galland F, Brolese G, Guerra MC, Bortolotto JW, Freitas R, et al. A simple, sensitive and widely applicable ELISA for S100B: methodological features of the measurement of this glial protein. J Neurosci Methods. 2008;169:93–9.PubMedGoogle Scholar
  18. 18.
    Paus E, Nustad K. Immunoradiometric assay for alpha gamma- and gamma gamma-enolase (neuron-specific enolase), with use of monoclonal antibodies and magnetizable polymer particles. Clin Chem. 1989;35:2034–8.PubMedGoogle Scholar
  19. 19.
    Nyberg L, Krohn RI, Ullen A, Brundell J, Haglid K, Stigbrand T. Sangtec (r)100 LIA a sensitive monoclonal assay for measuring protein S-100B in serum samples. Clin Chem. 1997;43:S233.Google Scholar
  20. 20.
    Nyberg L, Winquist L, Ullen A, Brundell J, Haglid K, Stigbrand T. LIAISON Sangtec S100 a new chemiluminescense immuniassay for the determination of protein S-100B in serum. Clin Chem. 1997;43:S152.Google Scholar
  21. 21.
    Nustad K, Dowell BL, Davis GJ, Stewart K, Nilsson O, Roijer E, et al. Characterization of monoclonal antibodies directed against squamous cell carcinoma antigens: report of the TD-10 Workshop. Tumour Biol. 2004;25:69–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Vallely KM, Rustandi RR, Ellis KC, Varlamova O, Bresnick AR, Weber DJ. Solution structure of human Mts1 (S100A4) as determined by NMR spectroscopy. Biochemistry. 2002;41:12670–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Arcuri C, Giambanco I, Bianchi R, Donato R. Annexin V, annexin VI, S100A1 and S100B in developing and adult avian skeletal muscles. Neuroscience. 2002;109:371–88.CrossRefPubMedGoogle Scholar
  24. 24.
    Garbuglia M, Verzini M, Donato R. Annexin VI binds S100A1 and S100B and blocks the ability of S100A1 and S100B to inhibit desmin and GFAP assemblies into intermediate filaments. Cell Calcium. 1998;24:177–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Rustandi RR, Baldisseri DM, Weber DJ. Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol. 2000;7:570–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Fernandez-Fernandez MR, Veprintsev DB, Fersht AR. Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci U S A. 2005;102:4735–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Grigorian M, Andresen S, Tulchinsky E, Kriajevska M, Carlberg C, Kruse C, et al. Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction. J Biol Chem. 2001;276:22699–708.CrossRefPubMedGoogle Scholar
  28. 28.
    Filipek A, Jastrzebska B, Nowotny M, Kuznicki J. CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem. 2002;277:28848–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Flatmark K, Maelandsmo GM, Mikalsen SO, Nustad K, Varaas T, Rasmussen H, et al. Immunofluorometric assay for the metastasis-related protein S100A4: release of S100A4 from normal blood cells prohibits the use of S100A4 as a tumor marker in plasma and serum. Tumour Biol. 2004;25:31–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Heizmann CW. S100B protein in clinical diagnostics: assay specificity. Clin Chem. 2004;50:249–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Mazzini GS, Schaf DV, Oliveira AR, Goncalves CA, Bello-Klein A, Bordignon S, et al. The ischemic rat heart releases S100B. Life Sci. 2005;77:882–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2010

Authors and Affiliations

  • Elisabeth Paus
    • 1
  • Mads Haugland Haugen
    • 2
  • Kari Hauge Olsen
    • 1
  • Kjersti Flatmark
    • 2
    • 3
  • Gunhild Mari Maelandsmo
    • 2
  • Olle Nilsson
    • 4
  • Eva Röijer
    • 4
  • Maria Lundin
    • 4
  • Christian Fermér
    • 4
  • Maria Samsonova
    • 5
  • Yuri Lebedin
    • 5
  • Torgny Stigbrand
    • 6
  1. 1.Department of Medical BiochemistryOslo University HospitalOsloNorway
  2. 2.Department of Tumor Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
  3. 3.Clinic for Cancer and Surgery, Norwegian Radium HospitalOslo University HospitalOsloNorway
  4. 4.Fujirebio Diagnostics ABGöteborgSweden
  5. 5.Xema-Medica Co, Ltd.MoscowRussia
  6. 6.Department of ImmunologyUniversity of UmeåUmeåSweden

Personalised recommendations