Advertisement

Tumor Biology

, Volume 31, Issue 6, pp 569–573 | Cite as

Reduced Walker 256 carcinosarcoma growth in vasopressin-deficient Brattleboro rats

  • Igor I. Khegay
  • Nelli A. Popova
  • Ludmila N. Ivanova
Research Article

Abstract

The growth pattern of carcinosarcoma Walker 256 was studied in rats with different levels of vasopressin in the blood. The Brattleboro rats are unable to synthesize vasopressin in a consequence of deletion in the coding gene. Hybrids from crossbreeding of the mutant Brattleboro and normal WAG rats inherit the one intact vasopressin gene and hold nearly normal hormone level. It was found that non-strain-specific carcinosarcoma Walker 256 intensively grows in WAG rats and their offsprings from crossbreeding with Brattleboro rats, and tumor development is equally terminated in them by death. Carcinosarcoma grows less intensely in Brattleboro rats; the tumor nodes increased only within the first 2 weeks, after which, the tumor began to decrease and eventually disappeared. Infusion of exogenous vasopressin to Brattleboro rats intensifies a tumor growth in the first 2 weeks after the inoculation of Walker 256 cells; however, it does not prevent a following regression and resorption of tumors.

Keywords

Carcinosarcoma Brattleboro rats Vasopressin 

Notes

Acknowledgments

This study was supported by the Russian Foundation for Basic Research (no. 09-04-00424).

References

  1. 1.
    Schmale H, Richter D. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature. 1984;308:705–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Moll UM, Lane BL, Robert F, Geenen V, Legros JJ. The neuroendocrine thymus: abundant occurrence of oxytocin-, vasopressin-, and neurophysin-like peptides in epithelial cells. Histochemistry. 1988;89:385–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Yirmiya R, Shavit Y, Ben-Eliyahu S, Martin FC, Weiner H, Liebeskind JC. Natural killer cell activity in vasopressin-deficient rats (Brattleboro strain). Brain Res. 1989;479:16–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Johnson HM, Farrar WL, Torres BA. Vasopressin replacement of interleukin 2 requirement in gamma interferon production: lymphokine activity of a neuroendocrine hormone. J Immunol. 1982;129:983–5.PubMedGoogle Scholar
  5. 5.
    Hashemi S, Palmer DS, Aye MT, Ganz PR. Platelet-activating factor secreted by DDAVP-treated monocytes mediates von Willebrand factor release from endothelial cells. J Cell Physiol. 1993;154:496–505.CrossRefPubMedGoogle Scholar
  6. 6.
    Cai Q, McReynolds MR, Keck M, Greer KA, Hoying JB, Brooks HL. Vasopressin receptor subtype 2 activation increases cell proliferation in the renal medulla of AQP1 null mice. Am J Physiol. 2007;293:F1858–64.CrossRefGoogle Scholar
  7. 7.
    Lee SB, Haber DA. Wilms tumor and the WT1 gene. Exp Cell Res. 2001;264:74–99.CrossRefPubMedGoogle Scholar
  8. 8.
    Brooks HL, Ageloff S, Kwon T-H, Brandt W, Terris JM, Seth A, et al. cDNA array identification of genes regulated in rat renal medulla in response to vasopressin infusion. Am J Physiol. 2003;284:F218–2228.Google Scholar
  9. 9.
    Conte-Devolx B, Oliver C, Giraud P, Castanas E, Boudouresque F, Gillioz P, et al. Adrenocorticotropin, and corticosterone secretion in Brattleboro rats. Endocrinology. 1982;110:2097–100.CrossRefPubMedGoogle Scholar
  10. 10.
    Saito T, Ishikawa S, Sasaki S, Higashiyama M, Nagasaka S, Fujita N, et al. Lack of vasopressin-independent upregulation of AQP-2 gene expression in homozygous Brattleboro rats. Am J Physiol. 1999;277:R427–33.PubMedGoogle Scholar
  11. 11.
    Ben-Eliyahu S, Page GG, Schleifer SJ. Stress, NK cells, and cancer: still a promissory note. Brain Behav Immun. 2007;21:881–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Valtin H, North WG, Edwards BR, Gellai M. Animal models of diabetes insipidus. Front Horm Res. 1985;13:105–26.Google Scholar
  13. 13.
    Schanoski AS, Cavalcanti TC, Campos CB, Viera-Matos AN, Rettori O, Guimaraes F. Walker 256 tumor MHC class I expression during the shift from A variant to the immunogenic AR variant. Cancer Lett. 2004;211:119–27.CrossRefPubMedGoogle Scholar
  14. 14.
    Khegai II, Gulyaeva MA, Popova NA, Zakharova LA, Ivanova LN. Immune system in vasopressin-deficient rats during ontogeny. Bull Exp Biol Med. 2003;136:448–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Zelena D, Földes A, Mergl Z, Barna I, Kovács KJ, Makara GB. Effects of repeated restraint stress on hypothalamo-pituitary-adrenocortical function in vasopressin deficient Brattleboro rats. Brain Res Bull. 2004;63:521–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Iwasaki Y, Oiso Y, Saito H, Majzoub JA. Effects of various mutations in the neurophysisn/clycopeptide portion of the vasopressin gene on vasopressin expression in vitro. Tohoku J Exp Med. 2000;191:187–202.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med. 2005;11:1188–96.CrossRefPubMedGoogle Scholar
  18. 18.
    Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9:59–71.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2010

Authors and Affiliations

  • Igor I. Khegay
    • 1
  • Nelli A. Popova
    • 1
  • Ludmila N. Ivanova
    • 1
  1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations