Advertisement

Tumor Biology

, Volume 31, Issue 5, pp 513–522 | Cite as

Alkaloids extracted from Pterogyne nitens induce apoptosis in malignant breast cell line

  • Roberta Aparecida Duarte
  • Elaine Rodrigues Mello
  • Camila Araki
  • Vanderlan da Silva Bolzani
  • Dulce Helena Siqueira e Silva
  • Luis Octavio Regasini
  • Tarsia Giabardo Alves Silva
  • Mauro César Cafundó de Morais
  • Valdecir Farias Ximenes
  • Christiane Pienna Soares
Research Article

Abstract

In the present study, two alkaloids isolated from Pterogyne nitens, a plant native to Brazil, have been shown to induce apoptosis in human breast cancer cells. These compounds, pterogynine (PGN) and pterogynidine (PGD), were tested for their effect on a human infiltrating ductal carcinoma cell line (ZR-7531). The cell line was treated with each alkaloid at several concentrations. Time-dependence (with or without recuperation time) and concentration-dependence (in the range 0.25-10 mM) were investigated in cytotoxicity and apoptosis assays. The annexin assay indicated an apparently higher percentage of death by necrosis of malignant cells after 24 h exposure to both P. nitens extracts than the Hoechst assay. Thus, our results in the two tests demonstrated that the Hoechst assay can discriminate between late apoptotic cells and necrosis, whereas the flow cytometry-based annexin V assay cannot. We concluded that PGN and PGD have effective antineoplastic activity against human breast cancer cells in vitro, by inducing programmed cell death.

Keywords

Breast cancer cell line Cytotoxic activity Alkaloids Apoptosis Necrosis Flow cytometry 

References

  1. 1.
    Lu R, Serrero G. Mediation of estrogen mitogenic effect in human breast cancer MCF-7 cells by PC-cell-derived growth factor (PCDGF/ granulin precursor). Proc Natl Acad Sci. 2001;98:142–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Kim JB, Lee K, Ko E, Han W, Lee JE, Shin I, et al. Berberine inhibits growth of the breast cancer cell lines MCF-7 and MDA-MB-231. Planta Med. 2008;74:39–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Waterhouse DW, Dragowska WH, Gelmon KA, Mayer LD, Bally MB. Pharmacodynamic behavior of lipossomal antisense oligonucleotides targeting Her-2/neu and vascular endothelial growth factor in an ascetic MDA435/LCC6 human breast cancer model. Cancer Biol Ther. 2004;3:197–204.PubMedGoogle Scholar
  4. 4.
    Brandão MG, Zanetti NN, Oliveira P, Grael CF, Santos AC, Monte-Mór RL. Brazilian medicinal plants described by 19th century European naturalists and in the official Pharmacopoeia. J Ethnopharmacol. 2008;120:141–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Kviecinski MR, Felipe KB, Schoenfelder T, de Lemos Wiese LP, Rossi MH, Goncalez E, et al. Study of the antitumor potential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. J Ethnopharmacol. 2008;17:69–75.CrossRefGoogle Scholar
  6. 6.
    Braga FG, Bouzada ML, Fabri RL, Matos OM, Moreira FO, Scio E, et al. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J Ethnopharmacol. 2007;111:396–402.CrossRefPubMedGoogle Scholar
  7. 7.
    Espindola LS, Vasconcelos Jr JR, de Mesquita ML, Marquié P, de Paula JE, Mambu L, et al. Trypanocidal activity of a new diterpene from Casearia sylvestris var. lingua. Planta Med. 2004;70:1093–5.CrossRefPubMedGoogle Scholar
  8. 8.
    de Mesquita ML, Grellier P, Blond A, Brouard JP, Paula JE, Espindola LS, et al. New ether diglycosides from Matayba guianensis with antiplasmodial activity. Bioorg Med Chem. 2005;13:4499–506.CrossRefPubMedGoogle Scholar
  9. 9.
    Tempone AG, Borborema SET, de Andrade HF, de Amorim GNC, Yogi A, Carvalho CS, et al. Antiprotozoal activity of Brazilian plant extracts fromisoquinoline alkaloid-producing families. Phytomedicine. 2005;12:382–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Mesquita ML, de Paula JE, Pessoa C, Moraes MO, Costa-Lotufo LV, Grougnet R, et al. Cytotoxic activity of Brazilian Cerrado plants used in traditional medicineagainst cancer cell lines. J Ethnopharmacol. 2009;123:439–45.CrossRefPubMedGoogle Scholar
  11. 11.
    Lorenzi H. Árvores Brasileiras: Manual de identificação e cultivo de plantas arbóreas do Brasil; Plantarum: Nova Odessa. 1998;1:151–60.Google Scholar
  12. 12.
    Bukart A. Las leguminosas argentinas; Aemé Agency: Buenos Aires. 1952;1:156–143.Google Scholar
  13. 13.
    Crivos M, Martinez MR, Pochettino ML, Remorini C, Sy A, Teves L. Pathways as signatures in landscape: towards na ethnography of mobility among the Mbya-Guaraní (Northeastern Argentina). J Ethnobiol & Ethnomed. 2007;2:1–12.Google Scholar
  14. 14.
    Regasini LO, Vellosa JCR, Silva DHS, Furlan M, Oliveira OMM, Khalil NM, et al. Flavonols from Pterogyne nitens and their evaluation as myeloperoxidase inhibitors. Phytochemistry. 2008;69:1739–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Regasini LO, Castro-Gamboa I, Silva DHS, Furlan M, Barreiro EJ, Ferreira PMP, et al. Cytotoxic guanidine alkaloids from Pterogyne nitens. J Nat Prod. 2009;72:473–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Regasini LO, Fernandes DC, Castro-Gamboa I, Silva DHS, Furlan M, Bolzani VS, et al. Constituintes químicos das flores de Pterogyne nitens (Caesalpinioideae). Quím Nova. 2008;31:802–6.CrossRefGoogle Scholar
  17. 17.
    Regasini LO, Oliveira CM, Vellosa JCR, Oliveira OMMF, Silva DHS, Bolzani VS. Free radical scavenging activity of Pterogyne nitens Tul. (Fabaceae). Afr J Biotechnol. 2008;7:4609–13.Google Scholar
  18. 18.
    Regasini LO, Lopes AA, Silva DHS, Furlan M, Young MCM, Maria DA, et al. Antiproliferative effect of Pterogyne nitens on melanoma cells. J Basic Appl Pharm Sci. 2007;28:335–40.Google Scholar
  19. 19.
    Fernandes DC, Regasini LO, Vellosa JCR, Pauletti PM, Castro-Gamboa I, Bolzani VS, et al. Myeloperoxidase inhibitory and radical scavenging activities of flavones from Pterogyne nitens. Chem Pharm Bull. 2008;56:723–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Ferreira FG, Regasini LO, Oliveira AM, Campos JADB, Silva DHS, Cavalheiro AJ, et al. Avaliação da mutagenicidade e antimutagenicidade de diferentes frações de Pterogyne nitens (Leguminosae), utilizando ensaio de micronúcleo de Tradescantia pallida. Braz J Pharmacognosy. 2009;19:61–7.Google Scholar
  21. 21.
    Regasini LO, Vieira-Júnior GM, Fernandes DC, Bozlani VS, Cavalheiro AJ, Silva DHS. Identification of triterpenes and sterols from Pterogyne nitens (Fabaceae-Caesalpinioideae) ushign high-resolution gas chromatography. J Chilean Chem Soc. 2009;54:218–21.Google Scholar
  22. 22.
    Souza A, Vendramini RV, Brunetti IL, Regasini LO, Silva DHS, Pepato MT. Tratamento crônico com extrato etanólico de Pterogyne nitens não melhora parâmetros clássicos do diabetes experimental. Braz J Pharmacognosy. 2009;19:412–7.Google Scholar
  23. 23.
    Weber CJ. A modification of Sakaguchi’s reaction for the quantitative determination of arginine. J Biol Chem. 1930;16:55–63.Google Scholar
  24. 24.
    Corral RA, Orazi OO, Petrucelli MF. A new guanidine alkaloid. Cell Mol Life Sci. 1969;25:1020–5.CrossRefGoogle Scholar
  25. 25.
    Bolzani VS, Gunatilaka AAL, Kingston DGI. Bioactive guanidine alkaloids from Pterogyne nitens. J Nat Prod. 1998;58:1683–8.CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Ong CN, Shen HM. Involvent of proapoptotic Bcl-2 family members in parthenolide induced mitochondrial dysfunction and apoptosis. Cancer Lett. 2004;211:175–88.CrossRefPubMedGoogle Scholar
  27. 27.
    Korostoff J, Wang JF, Kieba I, Miller M, Shenker BJ, Lally ET. Actnobacillus actinomycetemcomitans leucotoxin induces apoptosis in HL-60 cells. Infect Immun. 1998;66:4474–83.PubMedGoogle Scholar
  28. 28.
    Elstein KH, Zucker RM. Comparison of cellular and nuclear flow cytometric techniques for discriminating apoptotic subpopulations. Exp Cell Res. 1994;211:322–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Lopes FCM, Rocha A, Pirraco A, REgasini LO, Silva DHS, Bolzani VS, et al. Anti-angiogenic effects of pterogynidine alkaloid isolated from Alchornea glandulosa. BMC Complement Altern Med. 2009;9:15–26.CrossRefPubMedGoogle Scholar
  30. 30.
    Bao B, Sun Q, Yao X, Hong J, Lee CO, Sim CJ, et al. Citotoxic bisindole alkaloids from a marine sponge Spongosorites sp. J Nat Prod. 2005;68:711–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Dassonneville L, Lansiaux A, Wattelet A, Wattez N, Mahieu C, Miert SV, et al. Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: relation to drug-induced apoptosis. Eur J Pharmacol. 2000;409:9–18.CrossRefPubMedGoogle Scholar
  32. 32.
    Xu YK, Yang SP, Liao SG, Zhang H, Lin LP, Yue JM. Alkaloids from Gelsemium elegans. J Nat Prod. 2006;69:1347–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Kuribayashi K, Mayes PA, El-Deiry WS. What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol Ther. 2006;5(7):763–5.PubMedGoogle Scholar
  34. 34.
    Lamkanfi M, Kanneganti TD. Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol. 2010;42(1):21–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Griffin C, Sharda N, Sood D, Nair J, Mcnulty J, Pandey S. Selective cytotoxicity of pancratistatin relates natural Amaryllidaceae alkaloids: evaluation of the activity of two new compounds. Cancer Cell Int. 2007;7:01–7.CrossRefGoogle Scholar
  36. 36.
    Maciorowski Z, Delic J, Padoy E, Klijanienko J, Dubray B, Cosset JM, et al. Comparative analysis of apoptosis measured by Hoechst and flow cytometry in Hodgin’s lymphomas. Cytometry. 1998;32:44–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Mavar-Manga H, Haddad M, Pieters L, Baccelli C, Penge A, Quentin-Leclercq J. Anti-inflammatory compounds from leaves and root bark of Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. J Ethnopharmacol. 2008;115:25–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2010

Authors and Affiliations

  • Roberta Aparecida Duarte
    • 1
  • Elaine Rodrigues Mello
    • 1
  • Camila Araki
    • 1
  • Vanderlan da Silva Bolzani
    • 2
  • Dulce Helena Siqueira e Silva
    • 2
  • Luis Octavio Regasini
    • 2
  • Tarsia Giabardo Alves Silva
    • 1
  • Mauro César Cafundó de Morais
    • 1
  • Valdecir Farias Ximenes
    • 3
  • Christiane Pienna Soares
    • 1
  1. 1.School of Pharmaceutical SciencesUniversity of São Paulo State -UNESPAraraquaraBrazil
  2. 2.Institute of Chemistry of AraraquaraUniversity of São Paulo State - UNESPAraraquaraBrazil
  3. 3.School of Sciences of BauruUniversity of São Paulo State -UNESPBauruBrazil

Personalised recommendations