Skip to main content

Advertisement

Log in

Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells

  • Published:
Tumor Biology

Abstract

To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMAAM, PK1) or a hydrazone pH-sensitive bond (Dox-HPMAHYD). In contrast to Dox and Dox-HPMAHYD, Dox-HPMAAM accumulates within the cell’s intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMAAM conjugate, in contrast to Dox or Dox-HPMAHYD, increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMAAM increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMAAM possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMAAM treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rossmann P, Rihova B, Strohalm J, Ulbrich K. Morphology of rat kidney and thymus after native and antibody-coupled cyclosporin A application (reduced toxicity of targeted drug). Folia Microbiol (Praha). 1997;42:277–87.

    Article  CAS  Google Scholar 

  2. Rihova B, Strohalm J, Kovar M, et al. Induction of systemic antitumour resistance with targeted polymers. Scand J Immunol. 2005;62 Suppl 1:100–5.

    Article  CAS  PubMed  Google Scholar 

  3. Hopewell JW, Duncan R, Wilding D, Chakrabarti K. Preclinical evaluation of the cardiotoxicity of PK2: a novel HPMA copolymer–doxorubicin–galactosamine conjugate antitumour agent. Human Exp Toxicol. 2001;20:461–70.

    Article  CAS  Google Scholar 

  4. Kopecek J, Rejmanova P, Strohalm J, et al. Synthetic polymeric drugs. US Patent 5,037,883;1991.

  5. Etrych T, Jelinkova M, Rihova B, Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties. J Control Release. 2001;73:89–102.

    Article  CAS  PubMed  Google Scholar 

  6. Minko T, Kopeckova P, Kopecek J. Comparison of the anticancer effect of free and HPMA copolymer-bound adriamycin in human ovarian carcinoma cells. Pharm Res. 1999;16:986–96.

    Article  CAS  PubMed  Google Scholar 

  7. Kopecek J, Kopeckova P, Minko T, Lu Z. HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm. 2000;50:61–81.

    Article  CAS  PubMed  Google Scholar 

  8. Kovar M, Kovar L, Subr V, et al. HPMA copolymers containing doxorubicin bound by a proteolytically or hydrolytically cleavable bond: comparison of biological properties in vitro. J Control Release. 2004;99:301–14.

    Article  CAS  PubMed  Google Scholar 

  9. Mrkvan T, Sirova M, Etrych T, et al. Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor imunity. J Control Release. 2005;110:119–29.

    Article  CAS  PubMed  Google Scholar 

  10. Sirova M, Strohalm J, Subr V, et al. Treatment with HPMA copolymer-based doxorubicin conjugate containing human immunoglobulin induces long-lasting systemic anti-tumour immunity in mice. Cancer Immunol Immunother. 2007;56:35–47.

    Article  CAS  PubMed  Google Scholar 

  11. Ríhová B, Strohalm J, Hovorka O, et al. Doxorubicin release is not a prerequisite for the in vitro cytotoxicity of HPMA-based pharmaceuticals: in vitro effect of extra drug-free GlyPheLeuGly sequences. J Control Release. 2008;127:110–20.

    Article  PubMed  Google Scholar 

  12. Kovar L, Strohalm J, Chytil P, et al. The same drug but a different mechanism of action: comparison of free doxorubicin with two different N-(2-Hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugates in EL-4 cancer cell line. BioconjugChem. 2007;18:894–902.

    Article  CAS  Google Scholar 

  13. Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents–drug–polymer conjugates. Clin Cancer Res. 1999;5:83–94.

    CAS  PubMed  Google Scholar 

  14. Rihova B, Kovar L, Kovar M, Hovorka O. Cytotoxicity and immunostimulation: double attack on cancer cells with polymeric therapeutics. Trends Biotech. 2009;27:11–7.

    Article  CAS  Google Scholar 

  15. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41:189–207.

    Article  CAS  PubMed  Google Scholar 

  16. Rihova B, Jelinkova M, Strohalm J, et al. Antiproliferative effect of a lectin- and anti-Thy-1.2 antibody-targeted HPMA copolymer-bound doxorubicin on primary and metastatic human colorectal carcinoma and on human colorectal carcinoma transfected with the mouse Thy-1.2 gene. Bioconjug Chem. 2000;11:664–73.

    Article  CAS  PubMed  Google Scholar 

  17. Ríhová B, Strohalm J, Prausová J, et al. Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data. J Control Release. 2003;91:1–16.

    Article  PubMed  Google Scholar 

  18. Ríhová B. Immunomodulating activities of soluble synthetic polymer-bound drugs. Adv Drug Deliv Rev. 2002;54:653–74.

    Article  PubMed  Google Scholar 

  19. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.

    Article  CAS  PubMed  Google Scholar 

  20. Rabbani A, Finn RM, Ausio J. The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays. 2005;27:50–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hovorka O, Etrych T, Subr V, Strohalm J, Ulbrich K, Rihhova B. HPMA based macromolecular therapeutics: internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition. J Drug Target. 2006;14:391–403.

    Article  CAS  PubMed  Google Scholar 

  22. Hovorka O, St’astny M, Etrych T, et al. Differences in the intracellular fate of free and polymer-bound doxorubicin. J Control Release. 2002;80:101–17.

    Article  CAS  PubMed  Google Scholar 

  23. Ulbrich K, Subr V, Strohalm J, Plocova D, Jelinkova M, Rihova B. Polymeric drugs based on conjugates of synthetic and natural macromolecules. I. Synthesis and physico-chemical characterisation. J Control Release. 2000;64:63–79.

    Article  CAS  PubMed  Google Scholar 

  24. Etrych T, Mrkvan T, Chytil P, Konak C, Rihova B, Ulbrich K. Polymer prodrugs based on HPMA conjugates with pH-controlled activation of doxorubicin: I. Synthesis, physicochemical characterisation and preliminary biological evaluation. J Appl Polym Sci Appl Polym Symp. 2008;109:3050–61.

    Article  CAS  Google Scholar 

  25. Rejmanova P, Labsky J, Kopecek J. Aminolyses of monomeric and polymeric 4-nitrophenyl esters of N-methacryloylated amino acids. Makromol Chem. 1977;178:2159–68.

    Article  CAS  Google Scholar 

  26. Rihova B, Bilej M, Vetvicka V, et al. Biocompatibility of N-(2-hydroxypropyl) methacrylamide copolymers containing adriamycin. Immunogenicity, and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitro. Biomaterials. 1989;10:335–42.

    Article  CAS  PubMed  Google Scholar 

  27. Hardy MR, Townsend RR, Lee YC. Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal Biochem. 1988;170:54–62.

    Article  CAS  PubMed  Google Scholar 

  28. Fan JQ, Namiki Y, Matsuoka K, Lee YC. Comparison of acid hydrolytic conditions for Asn-linked oligosaccharides. Anal Biochem. 1994;219:375–8.

    Article  CAS  PubMed  Google Scholar 

  29. Packer NH, Lawson MA, Jardine DR, Redmond JW. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J. 1998;15:737–47.

    Article  CAS  PubMed  Google Scholar 

  30. Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta G. 2008;1780:325–46.

    CAS  Google Scholar 

  31. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature. 1995;378:736–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hernandez JD, Nguyen JT, He J, et al. Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate t cell death. J Immunol. 2006;177:5328–36.

    CAS  PubMed  Google Scholar 

  33. Wu W, Harley PH, Punt JA, Sharrow SO, Kearse KP. Identification of CD8 as a peanut agglutinin (PNA) receptor molecule on immature thymocytes. J Exp Med. 1996;184:759–64.

    Article  CAS  PubMed  Google Scholar 

  34. Leffler H, Barondes SH. Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J Biol Chem. 1986;261:10119–26.

    CAS  PubMed  Google Scholar 

  35. Leppanen A, Stowell S, Blixt O, Cummings RD. Dimeric galectin-1 binds with high affinity to {alpha}2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem. 2005;280:5549–62.

    Article  PubMed  Google Scholar 

  36. Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG. Cutting edge: CD7 delivers a pro-apoptotic signal during galectin-1-induced t cell death. J Immunol. 2000;165:2331–4.

    CAS  PubMed  Google Scholar 

  37. Koh HS, Lee C, Lee KS, et al. CD7 expression and galectin-1-induced apoptosis of immature thymocytes are directly regulated by NF-[kappa]B upon T-cell activation. Biochem Biophys Res Commun. 2008;370:149–53.

    Article  CAS  PubMed  Google Scholar 

  38. Pace KE, Lee C, Stewart PL, Baum LG. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol. 1999;163:3801–11.

    CAS  PubMed  Google Scholar 

  39. Rubinstein N, Alvarez M, Zwirner NW, et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: a potential mechanism of tumor-immune privilege. Cancer Cell. 2004;5:241–51.

    Article  CAS  PubMed  Google Scholar 

  40. Le QT, Shi G, Cao H, et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 2005;23:8932–41.

    Article  CAS  PubMed  Google Scholar 

  41. Salatino M, Croci DO, Bianco GNA, Ilarregui JM, Toscano MA, Rabinovich GA. Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opinion on Biological Therapy. 2008;8:45–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Grant Agency of the Czech Republic grant 305/07/P172, IAAX00500803, by the Institutional Research Concept AV0Z50200510, and by grant of the Academy of Sciences of the Czech Republic no. KAN200200651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Kovar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovar, L., Etrych, T., Kabesova, M. et al. Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells. Tumor Biol. 31, 233–242 (2010). https://doi.org/10.1007/s13277-010-0019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0019-7

Keywords

Navigation