Skip to main content
Log in

Liquiritin alleviates LPS-stimulated podocyte apoptosis and inflammation by activating Nrf2 signaling

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

The kidney is one of the most vulnerable organs during the pathogenesis of sepsis. Regulating podocyte injury may be helpful for the treatment of acute kidney injury (AKI) after sepsis. Liquiritin is a flavonoid isolated from the medicinal plant Glycyrrhizae Radix et Rhizoma (Gan-cao) and might have nephroprotective properties. The study aimed to explore the functions and mechanism of liquiritin in a cell model of septic AKI.

Methods

The cell model of septic AKI was established by stimulating podocytes with lipopolysaccharide (LPS). The concentration of proinflammatory factors (TNF-α, IL-1β and IL-6) was evaluated by enzyme-linked immunosorbent assay (ELISA). Podocyte viability and apoptosis were determined by cell counting kit-8 (CCK-8) and TdT-mediated dUTP nick-end labeling (TUNEL) assays. Western blotting was performed to measure the protein levels of apoptosis-related markers, nuclear factor E2-related factor 2 (Nrf2), cytoplasmic Nrf2, and nuclear Nrf2. RT-qPCR was required to assess the mRNA levels of Nrf2 and proinflammatory cytokines.

Results

LPS treatment induced podocyte injury by suppressing cell viability and accelerating cell apoptosis, and the trend was reversed by liquiritin. Moreover, liquiritin prevented LPS-evoked high levels of proinflammatory cytokines in podocytes. LPS caused the inactivation of the Nrf2 signaling by reducing cytoplasmic Nrf2 level and increasing nuclear Nrf2 level. Liquiritin activated the Nrf2 signaling in the context of LPS by controlling Nrf2 nuclear transition. Inhibition of Nrf2 signaling using ML385 suppressed the protective effect of liquiritin on podocyte dysfunction.

Conclusion

Liquiritin mitigates LPS-induced podocyte apoptosis and inflammation by activating Nrf2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Basist P et al (2022) Metabolite profiling and nephroprotective potential of Glycyrrhiza glabra L. roots against cisplatin-induced nephrotoxicity in vitro and in vivo. Iran J Basic Med Sci 25(11):1286–1298

    PubMed  PubMed Central  Google Scholar 

  • Doganyigit Z, Eroglu E, Akyuz E (2022) Inflammatory mediators of cytokines and chemokines in sepsis: from bench to bedside. Hum Exp Toxicol 41:9603271221078872

    Article  CAS  PubMed  Google Scholar 

  • Du SH et al (2017) Application of RT-qPCR in the study of forensic pathology. Fa Yi Xue Za Zhi 33(5):526–531

    CAS  PubMed  Google Scholar 

  • Esposito V et al (2013) CHOP deficiency results in elevated lipopolysaccharide-induced inflammation and kidney injury. Am J Physiol Renal Physiol 304(4):F440–F450

    Article  CAS  PubMed  Google Scholar 

  • Feng X et al (2019) Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3β/Nrf2 signaling pathway. J Cell Physiol 234(10):18994–19009

    Article  CAS  PubMed  Google Scholar 

  • Gao F et al (2021) USP10 alleviates sepsis-induced acute kidney injury by regulating Sirt6-mediated Nrf2/ARE signaling pathway. J Inflamm (Lond) 18(1):25

    Article  CAS  PubMed  Google Scholar 

  • Gui Y et al (2020) Schisantherin A attenuates sepsis-induced acute kidney injury by suppressing inflammation via regulating the NRF2 pathway. Life Sci 258:118161

    Article  CAS  PubMed  Google Scholar 

  • Ha ZL, Yu ZY (2021) Downregulation of miR-29b-3p aggravates podocyte injury by targeting HDAC4 in LPS-induced acute kidney injury. Kaohsiung J Med Sci 37(12):1069–1076

    Article  CAS  PubMed  Google Scholar 

  • He S et al (2022) NAD(+) ameliorates endotoxin-induced acute kidney injury in a sirtuin1-dependent manner via GSK-3β/Nrf2 signalling pathway. J Cell Mol Med 26(7):1979–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari S, Mehri S, Hosseinzadeh H (2021) The genus Glycyrrhiza (Fabaceae family) and its active constituents as protective agents against natural or chemical toxicities. Phytother Res 35(12):6552–6571

    Article  CAS  PubMed  Google Scholar 

  • Hongyan L et al (2016) Antihyperuricemic effect of liquiritigenin in potassium oxonate-induced hyperuricemic rats. Biomed Pharmacother 84:1930–1936

    Article  CAS  PubMed  Google Scholar 

  • Hu X et al (2022) Tacrolimus alleviates LPS-induced AKI by inhibiting TLR4/MyD88/NF-κB signalling in mice. J Cell Mol Med 26(2):507–514

    Article  CAS  PubMed  Google Scholar 

  • Huang Z et al (2018) Liquiritigenin and liquiritin alleviated MCT-induced HSOS by activating Nrf2 antioxidative defense system. Toxicol Appl Pharmacol 355:18–27

    Article  CAS  PubMed  Google Scholar 

  • Huang Z et al (2019) Liquiritigenin and liquiritin alleviated monocrotaline-induced hepatic sinusoidal obstruction syndrome via inhibiting HSP60-induced inflammatory injury. Toxicology 428:152307

    Article  CAS  PubMed  Google Scholar 

  • Huang X et al (2020) miR-129-5p alleviates LPS-induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway. Int Immunopharmacol 89(Pt A):107016

    Article  CAS  PubMed  Google Scholar 

  • Kang HE et al (2011) Effects of acute renal failure induced by uranyl nitrate on the pharmacokinetics of liquiritigenin and its two glucuronides, M1 and M2, in rats. J Pharm Pharmacol 63(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Lee JY et al (2009) Liquiritigenin, a licorice flavonoid, helps mice resist disseminated candidiasis due to Candida albicans by Th1 immune response, whereas liquiritin, its glycoside form, does not. Int Immunopharmacol 9(5):632–638

    Article  CAS  PubMed  Google Scholar 

  • Li XQ et al (2018) Liquiritin suppresses UVB-induced skin injury through prevention of inflammation, oxidative stress and apoptosis through the TLR4/MyD88/NF-κB and MAPK/caspase signaling pathways. Int J Mol Med 42(3):1445–1459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2020) Liquiritin protects PC12 cells from corticosterone-induced neurotoxicity via regulation of metabolic disorders, attenuation ERK1/2-NF-κB pathway, activation Nrf2-Keap1 pathway, and inhibition mitochondrial apoptosis pathway. Food Chem Toxicol 146:111801

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2021a) Ginkgolide A attenuates sepsis-associated kidney damage via upregulating microRNA-25 with NADPH oxidase 4 as the target. Int Immunopharmacol 95:107514

    Article  CAS  PubMed  Google Scholar 

  • Li M et al (2021b) The protective effect of liquiritin in hypoxia/reoxygenation-induced disruption on blood brain barrier. Front Pharmacol 12:671783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X et al (2019) Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed Pharmacother 117:109070

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2020) Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. Cell Calcium 88:102198

    Article  CAS  PubMed  Google Scholar 

  • Ma Y et al (2022) Podocyte protection by Angptl3 knockout via inhibiting ROS/GRP78 pathway in LPS-induced acute kidney injury. Int Immunopharmacol 105:108549

    Article  CAS  PubMed  Google Scholar 

  • Manrique-Caballero CL, Del Rio-Pertuz G, Gomez H (2021) Sepsis-associated acute kidney injury. Crit Care Clin 37(2):279–301

    Article  PubMed  PubMed Central  Google Scholar 

  • Matzinger M, Fischhuber K, Heiss EH (2018) Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 36(6):1738–1767

    Article  CAS  PubMed  Google Scholar 

  • Michaličková D et al (2020) Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis. Eur J Pharmacol 873:172973

    Article  PubMed  Google Scholar 

  • Mirzaei S et al (2021) Nrf2 signaling pathway in cisplatin chemotherapy: potential involvement in organ protection and chemoresistance. Pharmacol Res 167:105575

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AF et al (2017) Telluric acid ameliorates endotoxemic kidney injury in mice: involvement of TLR4, Nrf2, and PI3K/Akt signaling pathways. Inflammation 40(5):1742–1752

    Article  CAS  PubMed  Google Scholar 

  • Mou SQ et al (2021) Liquiritin attenuates lipopolysaccharides-induced cardiomyocyte injury via an AMP-activated protein kinase-dependent signaling pathway. Front Pharmacol 12:648688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazari S, Rameshrad M, Hosseinzadeh H (2017) Toxicological effects of Glycyrrhiza glabra (licorice): a review. Phytother Res 31(11):1635–1650

    Article  PubMed  Google Scholar 

  • Ni H et al (2020) Liquiritin alleviates pain through inhibiting CXCL1/CXCR2 signaling pathway in bone cancer pain rat. Front Pharmacol 11:436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwafor DC, Brown CM (2021) A novel role for tissue-nonspecific alkaline phosphatase at the blood-brain barrier during sepsis. Neural Regen Res 16(1):99–100

    Article  CAS  PubMed  Google Scholar 

  • Peng Y et al (2015) Overexpression of toll-like receptor 2 in glomerular endothelial cells and podocytes in septic acute kidney injury mouse model. Ren Fail 37(4):694–698

    Article  CAS  PubMed  Google Scholar 

  • Peng Y et al (2022) Shikonin attenuates kidney tubular epithelial cells apoptosis, oxidative stress, and inflammatory response through nicotinamide adenine dinucleotide phosphate oxidase 4/PTEN pathway in acute kidney injury of sepsis model. Drug Dev Res. https://doi.org/10.1002/ddr.21936

    Article  PubMed  Google Scholar 

  • Podgórski P et al (2019) Glomerular podocytes in diabetic renal disease. Adv Clin Exp Med 28(12):1711–1715

    Article  PubMed  Google Scholar 

  • Senouthai S et al (2019) Fractalkine is involved in lipopolysaccharide-induced podocyte injury through the Wnt/β-catenin pathway in an acute kidney injury mouse model. Inflammation 42(4):1287–1300

    Article  CAS  PubMed  Google Scholar 

  • Sharma R et al (2023) Revisiting licorice as a functional food in the management of neurological disorders: bench to trend. Neurosci Biobehav Rev 155:105452

    Article  CAS  PubMed  Google Scholar 

  • Shen Y et al (2019) Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 125:496–502

    Article  CAS  PubMed  Google Scholar 

  • Tavakoli R et al (2021) Cardioprotective effects of natural products via the Nrf2 signaling pathway. Curr Vasc Pharmacol 19(5):525–541

    Article  CAS  PubMed  Google Scholar 

  • Thu VT, Yen NTH, Ly NTH (2021) Liquiritin from radix glycyrrhizae protects cardiac mitochondria from hypoxia/reoxygenation damage. J Anal Methods Chem 2021:1857464

    Article  PubMed  PubMed Central  Google Scholar 

  • Uto T et al (2019) Liquiritin and liquiritigenin induce melanogenesis via enhancement of p38 and PKA signaling pathways. Medicines (Basel) 6:68

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2018) Resveratrol ameliorates sepsis-induced acute kidney injury in a pediatric rat model via Nrf2 signaling pathway. Exp Ther Med 16(4):3233–3240

    PubMed  PubMed Central  Google Scholar 

  • Wu Q et al (2020) Lycium barbarum polysaccharides attenuate kidney injury in septic rats by regulating Keap1-Nrf2/ARE pathway. Life Sci 242:117240

    Article  CAS  PubMed  Google Scholar 

  • Xia S et al (2019) Honokiol attenuates sepsis-associated acute kidney injury via the inhibition of oxidative stress and inflammation. Inflammation 42(3):826–834

    Article  CAS  PubMed  Google Scholar 

  • Xu G et al (2019) The miR-15a-5p-XIST-CUL3 regulatory axis is important for sepsis-induced acute kidney injury. Ren Fail 41(1):955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2021) Liquiritin reduces lipopolysaccharide-aroused HaCaT cell inflammation damage via regulation of microRNA-31/MyD88. Int Immunopharmacol 101(Pt B):108283

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2020) The Nrf-2/HO-1 signaling axis: a ray of hope in cardiovascular diseases. Cardiol Res Pract 2020:5695723

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B et al (2021a) Shionone attenuates sepsis-induced acute kidney injury by regulating macrophage polarization via the ECM1/STAT5 pathway. Front Med (lausanne) 8:796743

    Article  PubMed  Google Scholar 

  • Zhang J et al (2021b) Loganin attenuates septic acute renal injury with the participation of AKT and Nrf2/HO-1 signaling pathways. Drug Des Devel Ther 15:501–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F et al (2023) LncRNA PMS2L2 Is downregulated in sepsis-induced acute kidney injury and inhibits LPS-induced apoptosis of podocytes. Kidney Blood Press Res 48(1):515–521

    Article  PubMed  Google Scholar 

  • Zheng G et al (2018) Propofol attenuates sepsis-induced acute kidney injury by regulating miR-290-5p/CCL-2 signaling pathway. Braz J Med Biol Res 51(11):e7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Shi J, Li H (2018) Liquiritigenin attenuates high glucose-induced mesangial matrix accumulation, oxidative stress, and inflammation by suppression of the NF-κB and NLRP3 inflammasome pathways. Biomed Pharmacother 106:976–982

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

The work was supported by the Natural Science Fund of Hubei Science and Technology Department, General Project (2022CFC002).

Author information

Authors and Affiliations

Authors

Contributions

Shijiao Zheng, Yu Li, and Dan Luo were the main designers of this study. Shijiao Zheng, Yu Li, Dan Luo, Cairong Zhu, Hongyu Yang, Tong Wang, and Zhen Chen collected and analyzed the data. Shijiao Zheng, Yu Li, Dan Luo, Haiyan Zhao, Jing He, Tong Wang, and Zhen Chen drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tong Wang or Zhen Chen.

Ethics declarations

Conflict of interest

Shijiao Zheng, Yu Li, Dan Luo, Cairong Zhu, Haiyan Zhao, Jing He, Hongyu Yang, Tong Wang, Zhen Chen: None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Li, Y., Luo, D. et al. Liquiritin alleviates LPS-stimulated podocyte apoptosis and inflammation by activating Nrf2 signaling. Mol. Cell. Toxicol. (2024). https://doi.org/10.1007/s13273-024-00459-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-024-00459-1

Keywords

Navigation