Skip to main content
Log in

Unlocking the potential: Baicalin's apoptosis-reducing power and activation of NRF2/P62 for alleviating diabetic cardiomyopathy in rats

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Baicalin has been proven to have the potential to reduce apoptosis and diabetic cardiomyopathy (DCM). However, the mechanism behind this effect still needs to be fully understood.

Objectives

To explore the potential therapeutic properties of Baicalin in managing DCM and controlling glycemic levels.

Results

In this study, Baicalin (at doses of 20, 60, or 120 mg/kg/d) were used to treat diabetic rats. At the end of treatment, the heart function of the rats was assessed. Furthermore, their serum levels of TG, TC, and LDL were measured using the ELISA method. Cell viability was evaluated using the CCK8 assay and apoptosis was assessed using flow cytometry or TUNEL assay. Primary cardiomyocytes were infected with NRF2 siRNA and then treated with Baicalin while incubating with high glucose (25 mmol/L). Protein and mRNA variations were analyzed using Western blot and qRT-PCR, respectively. The study found that when given Baicalin, diabetic rats demonstrated improved heart function. Without treatment, the hearts of diabetic rats displayed elevated levels of apoptotic cell death and cardiomyocyte autophagy, as well as decreased expressions of NRF2, HO-1, and KEAP1. However, Baicalin was able to reverse all of these diabetes-induced biochemical changes. Treatment enhanced NRF2 nuclear transfer, reduced hyperglycemia-induced apoptosis and autophagy in primary cardiomyocytes, and improved cellular viability in in vitro experiments. It must be noted that the protective effects of Baicalin were only observed when the Nrf2 gene expression was present in primary cardiomyocytes.

Conclusion

Baicalin may reduce the effects of DCM by activating NRF2 through KEAP1 suppression and regulating autophagy activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author by reasonable request.

References

  • Alnahdi A, John A, Raza H (2019) Augmentation of glucotoxicity, oxidative stress, apoptosis and mitochondrial dysfunction in Hepg2 cells by palmitic acid. Nutrients 11(9):1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong AC, Ambale-Venkatesh B, Turkbey E, Donekal S, Chamera E, Backlund JY, Cleary P, Lachin J, Bluemke DA, Lima JA (2017) Association of cardiovascular risk factors and myocardial fibrosis with early cardiac dysfunction in Type 1 diabetes: the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 40(3):405–411

    Article  PubMed  Google Scholar 

  • Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47(4):693–700

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Wang Q, Qi J, Yu H, Wang C, Wang X, Ren Y, Yang F (2019) Promoting effect of baicalin on nitric oxide production in cmecs via activating the Pi3k-Akt-Enos pathway attenuates myocardial ischemia-reperfusion injury. Phytomedicine 63:153035

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Yang C, Jin Z, Wei H, Xin C, Zheng C, Xu J, Huang Q, Zhang Z, Hu T (2022) Fndc5/Irisin reduces ferroptosis and improves mitochondrial dysfunction in hypoxic cardiomyocytes by Nrf2/Ho-1 Axis. Cell Biol Int 46(5):723–736

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wan W, Guo Y, Ye T, Fo Y, Sun Y, Qu C, Yang B, Zhang C (2021) Pinocembrin ameliorates post-infarct heart failure through activation of Nrf2/Ho-1 signaling pathway. Mol Med 27(1):100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Despa S, Margulies KB, Chen L, Knowlton AA, Havel PJ, Taegtmeyer H, Bers DM, Despa F (2012) Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats. Circ Res 110(4):598–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhakshinamoorthy S, Long DJ 2nd, Jaiswal AK (2000) Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens. Curr Top Cell Regul 36:201–216

    Article  CAS  PubMed  Google Scholar 

  • Dillmann WH (2019) Diabetic cardiomyopathy. Circ Res 124(8):1160–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiordaliso F, Bianchi R, Staszewsky L, Cuccovillo I, Doni M, Laragione T, Salio M, Savino C, Melucci S, Santangelo F et al (2004) Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. J Mol Cell Cardiol 37(5):959–968

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Chen W, Yan M, Liu J, Luo H, Wang C, Yang P (2020) Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mtor signaling. Int J Mol Med 45(1):195–209

    PubMed  Google Scholar 

  • Guo F, Wang Y, Wang J, Liu Z, Lai Y, Zhou Z, Liu Z, Zhou Y, Xu X, Li Z et al (2022) Choline protects the heart from doxorubicin-induced cardiotoxicity through vagal activation and Nrf2/Ho-1 pathway. Oxid Med Cell Longev 2022:4740931

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu X, Rajesh M, Zhang J, Zhou S, Wang S, Sun J, Tan Y, Zheng Y, Cai L (2018) Protection by dimethyl fumarate against diabetic cardiomyopathy in type 1 diabetic mice likely via activation of nuclear factor erythroid-2 related factor 2. Toxicol Lett 287:131–141

    Article  CAS  PubMed  Google Scholar 

  • Huang DD, Shi G, Jiang Y, Yao C, Zhu C (2020) A review on the potential of resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother 125:109767

    Article  CAS  PubMed  Google Scholar 

  • Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T et al (2013) Phosphorylation of P62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51(5):618–631

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, McMahon M, Hayes JD, Johansen T (2010) P62/Sqstm1 is a target gene for transcription factor nrf2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285(29):22576–22591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD (2015) P62 links autophagy and Nrf2 signaling. Free Radic Biol Med 88(Pt B):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Peng D, Shi W, Guo J, Huo S, Men L, Zhang C, Li S, Lv J, Lin L (2021) Il-6/Stat3 signaling promotes cardiac dysfunction by upregulating Fundc1-dependent mitochondria-associated endoplasmic reticulum membranes formation in sepsis mice. Front Cardiovasc Med 8:790612

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Luan Y, Zhang ZH, Cheng GH, Qi TG, Sun C (2014) Baicalin protects the myocardium from reperfusion-induced damage in isolated rat hearts via the antioxidant and paracrine effect. Exp Ther Med 7(1):254–259

    Article  CAS  PubMed  Google Scholar 

  • Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar A, Emani S, Bonagura JD, Feldman DS, Györke S, Carnes CA (2007) Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 293(5):R1787–R1797

    Article  CAS  PubMed  Google Scholar 

  • Li K, Deng Y, Deng G, Chen P, Wang Y, Wu H, Ji Z, Yao Z, Zhang X, Yu B et al (2020a) High cholesterol induces apoptosis and autophagy through the Ros-Activated Akt/Foxo1 pathway in tendon-derived stem cells. Stem Cell Res Ther 11(1):131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Cheng J, Liu J (2020b) Baicalin protects human Oa chondrocytes against Il-1β-induced apoptosis and Ecm degradation by activating autophagy via Mir-766-3p/Aifm1 axis. Drug Des Devel Ther 14:2645–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao HH, Zhang N, Meng YY, Feng H, Yang JJ, Li WJ, Chen S, Wu HM, Deng W, Tang QZ (2019) Myricetin alleviates pathological cardiac hypertrophy via Traf6/Tak1/Mapk and Nrf2 signaling pathway. Oxid Med Cell Longev 2019:6304058

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin L, Wu XD, Davey AK, Wang J (2010) The Anti-Inflammatory effect of baicalin on hypoxia/reoxygenation and Tnf-alpha induced injury in cultural rat cardiomyocytes. Phytother Res 24(3):429–437

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Li J, Liu M, Zhang M, Xue Y, Zhang Y, Han X, Jing X, Chu L (2021) Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 139:111552

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo-Almorós A, Cepeda-Rodrigo JM, Lorenzo Ó (2022) Diabetic cardiomyopathy. Rev Clin Esp (barc) 222(2):100–111

    Article  PubMed  Google Scholar 

  • Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A (2020) The growing epidemic of diabetes mellitus. Curr Vasc Pharmacol 18(2):104–109

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Yan D, Li S, Liu S, Zeng F, Cheung CW, Liu H, Irwin MG, Huang H, Xia Z (2020) Allopurinol reduces oxidative stress and activates Nrf2/P62 to attenuate diabetic cardiomyopathy in rats. J Cell Mol Med 24(2):1760–1773

    Article  CAS  PubMed  Google Scholar 

  • Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F (2021) Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and Mapk signaling pathway. Drug Des Devel Ther 15:3207–3221

    Article  PubMed  PubMed Central  Google Scholar 

  • Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J et al (2018) Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the translational research committee of the heart failure association-European society of cardiology. Eur Heart J 39(48):4243–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marwick TH, Ritchie R, Shaw JE, Kaye D (2018) Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol 71(3):339–351

    Article  PubMed  Google Scholar 

  • Murtaza G, Virk HUH, Khalid M, Lavie CJ, Ventura H, Mukherjee D, Ramu V, Bhogal S, Kumar G, Shanmugasundaram M et al (2019) Diabetic cardiomyopathy - a comprehensive updated review. Prog Cardiovasc Dis 62(4):315–326

    Article  PubMed  Google Scholar 

  • Nie P, Bai X, Lou Y, Zhu Y, Jiang S, Zhang L, Tian N, Luo P, Li B (2021) Human umbilical cord mesenchymal stem cells reduce oxidative damage and apoptosis in diabetic nephropathy by activating Nrf2. Stem Cell Res Ther 12(1):450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) Idf diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50

    Article  CAS  PubMed  Google Scholar 

  • Paolillo S, Marsico F, Prastaro M, Renga F, Esposito L, De Martino F, Di Napoli P, Esposito I, Ambrosio A, Ianniruberto M et al (2019) Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications. Heart Fail Clin 15(3):341–347

    Article  PubMed  Google Scholar 

  • Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M (2018) Complications of diabetes 2017. J Diabetes Res 2018:3086167

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, Wong C, Levinger P et al (2016) Muscle atrophy in patients with type 2 diabetes mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 22:94–109

    PubMed  PubMed Central  Google Scholar 

  • Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, McGuire DK, Sattar N, Rosengren A, Gudbjörnsdottir S (2017) Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 376(15):1407–1418

    Article  PubMed  Google Scholar 

  • Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, Zhao XR, Zhao H, Hao MF, Li MD et al (2020) Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and Pi3k-Akt signalling pathways. J Cell Mol Med 24(21):12355–12367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. activation by Oxidative Stress and Identification of the DNA consensus sequence required for functional activity. J Biol Chem 266(18):11632–11639

    Article  CAS  PubMed  Google Scholar 

  • Russo I, Frangogiannis NG (2016) Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 90:84–93

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Choi AM (2013) Autophagy: an integral component of the mammalian stress response. J Biochem Pharmacol Res 1(3):176–188

    PubMed  PubMed Central  Google Scholar 

  • Shen K, Feng X, Pan H, Zhang F, Xie H, Zheng S (2017) Baicalin ameliorates experimental liver cholestasis in mice by modulation of oxidative stress, inflammation, and Nrf2 transcription factor. Oxid Med Cell Longev 2017:6169128

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Meena A, Luqman S (2021) Baicalin mediated regulation of key signaling pathways in cancer. Pharmacol Res 164:105387

    Article  CAS  PubMed  Google Scholar 

  • Su H, Ji L, Xing W, Zhang W, Zhou H, Qian X, Wang X, Gao F, Sun X, Zhang H (2013) Acute hyperglycaemia enhances oxidative stress and aggravates myocardial ischaemia/reperfusion injury: role of thioredoxin-interacting protein. J Cell Mol Med 17(1):181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, Goldblatt CS, Meyer CJ, Li X, Cai L et al (2011) Diabetic downregulation of Nrf2 activity via Erk contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 60(2):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, Jiang GH, Bu PL, Zhang Y, Zhong M et al (2011) Trb3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 60(11):2963–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Gao L, Zimmerman MC, Zucker IH (2018) Myocardial infarction-induced microrna-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol 314(5):H928–H939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, Qiu Z, Xia Z (2021) Activation of Nrf2/Fpn1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones 27(2):149–164

    Article  PubMed  Google Scholar 

  • Ungvari Z, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, Ballabh P, Recchia FA, Wilkerson DC, Sonntag WE et al (2011) Adaptive induction of Nf-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart Circ Physiol 300(4):H1133–H1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P (2015) Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852(2):232–242

    Article  CAS  PubMed  Google Scholar 

  • Vashi R, Patel BM (2021) Nrf2 in cardiovascular diseases: a ray of hope! J Cardiovasc Transl Res 14(3):573–586

    Article  PubMed  Google Scholar 

  • Wang G, Song X, Zhao L, Li Z, Liu B (2018) Resveratrol prevents diabetic cardiomyopathy by increasing Nrf2 expression and transcriptional activity. Biomed Res Int 2018:2150218

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xue J, Li Y, Zhou X, Qiao S, Han D (2019) Telmisartan protects against high glucose/high lipid-induced apoptosis and insulin secretion by reducing the oxidative and Er stress. Cell Biochem Funct 37(3):161–168

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen P, Cao Q, Wang W, Chang X (2022) Traditional Chinese medicine ginseng Dingzhi decoction ameliorates myocardial fibrosis and high glucose-induced cardiomyocyte injury by regulating intestinal flora and mitochondrial dysfunction. Oxid Med Cell Longev 2022:9205908

    PubMed  PubMed Central  Google Scholar 

  • Wei L, Zhou Q, Tian H, Su Y, Fu GH, Sun T (2020) Integrin Β3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the Pten/Akt/Mtor and Erk1/2 pathways. Int J Biol Sci 16(4):644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo AY, Cheng CH, Waye MM (2005) Baicalein protects rat cardiomyocytes from hypoxia/reoxygenation damage via a prooxidant mechanism. Cardiovasc Res 65(1):244–253

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Yao H, Zhang B, Zhou S, Hou P, Chen K (2021) Κ Opioid receptor agonist inhibits myocardial injury in heart failure rats through activating Nrf2/Ho-1 pathway and regulating Ca(2+)-Serca2a. Oxid Med Cell Longev 2021:7328437

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Ding Y, Tanimoto A, Wang KY, Guo X, Li Z, Tasaki T, Nabesima A, Murata Y, Shimajiri S et al (2011) Apoptosis signal-regulating kinase 1 deficiency accelerates hyperlipidemia-induced atheromatous plaques via suppression of macrophage apoptosis. Arterioscler Thromb Vasc Biol 31(7):1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Chen B, Ren Q (2019) Baicalin relieves hypoxia-aroused h9c2 cell apoptosis by activating Nrf2/Ho-1-Mediated Hif1α/Bnip3 pathway. Artif Cells Nanomed Biotechnol 47(1):3657–3663

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hu M, Jia W, Liu G, Zhang J, Wang B, Li J, Cui P, Li X, Lager S et al (2020) Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in Pcos-like rats. J Endocrinol 246(3):247–263

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Huang M, Yan L, Zhang H, Shi C, Liu J, Zhao S, Liu H, Wang B (2022) Exosomes derived from baicalin-pretreated mesenchymal stem cells alleviate hepatocyte ferroptosis after acute liver injury via the Keap1-Nrf2 pathway. Oxid Med Cell Longev 2022:8287227

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

We are very grateful to the Chongqing Hospital of Traditional Chinese Medicine for its financial support for this project.

Author information

Authors and Affiliations

Authors

Contributions

Research study design: XZ, Experiment conduction: WW, Data acquisition: RH, Data analysis: LL, Manuscript writing: XZ.

Corresponding author

Correspondence to Xia Zhang.

Ethics declarations

Conflict of interest

Wanling Wang declares that she has no conflict of interest, Rui Han declares that she has no conflict of interest, Li Lai declares that she has no conflict of interest, Xia Zhang declares that she has no conflict of interest.

Ethical approval

All the experimental procedures were performed in accordance with the ethical standards stipulated by the International Committee of Medical Journal Editors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Han, R., Lai, L. et al. Unlocking the potential: Baicalin's apoptosis-reducing power and activation of NRF2/P62 for alleviating diabetic cardiomyopathy in rats. Mol. Cell. Toxicol. (2024). https://doi.org/10.1007/s13273-024-00434-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-024-00434-w

Keywords

Navigation