Skip to main content

Identification of chromosomal type II toxin–antitoxin system from plant pathogenic Pseudomonas cichorii JBC 1

Abstract

Backgrounds

Almost all bacteria harbor toxin–antitoxin (TA) systems on their chromosomes, which are associated with diverse biological roles such as stress response, cell physiology, biofilm formation, and programmed cell death. Pseudomonas cichorii JBC1 has a diverse host range and can cause disease in a wide range of plant species. Under favorable environmental conditions, the bacterium can cause severe disease in nearly all of the crops that have been described. However, TA systems have not been determined.

Objective

This study aimed to identify the TA system of P. cichorii JBC1 genome based on the cell toxicity of Escherichia coli regulated by TA systems and to evaluate the mRNA expression levels under various stressful growth conditions.

Results

Among 11 putative TA pairs predicted from the P. cichorii JBC1 genome by in silico analysis, two toxins, PCH70-01,410 and − 16,540, caused cell growth arrest and cell death in E. coli, and the toxicity of PCH70-01,410 and − 16,540 was neutralized by its cognate antitoxin candidates, PCH70-01,400 and − 16,550 in PCH70-01,400/01410 and PCH70-16,550/16540 TA complexes, respectively. Moreover, mRNA expression levels of PCH70-01,400/01410 and PCH70-16,550/16540 differed under various stresses (i.e., oxidative, acidic, and heat shocks).

Conclusion

Two TA systems, PCH70-01,400/01410 and PCH70-16,550/16540, were identified in P. cichorii JBC 1. These TA systems show different toxin and antitoxin mRNA expression levels according to stressful growth conditions, including oxidative, acidic, and heat shocks in E. coli.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA, Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A, Finn RD (2020) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354

    Article  PubMed Central  Google Scholar 

  • Chan WT, Moreno-Córdoba I, Yeo CC, Espinosa M (2012) Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev 76:773–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cottyn B, Heylen K, Heyrman J, Vanhouteghem K, Pauwelyn E, Bleyaert P, Van Vaerenbergh J, Höfte M, De Vos P, Maes M (2009) Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders. Syst Appl Microbiol 32:211–225

    Article  PubMed  CAS  Google Scholar 

  • Cottyn B, Baeyen S, Pauwelyn E, Verbaendert I, De Vos P, Bleyaert P, Höfte M, Maes M (2011) Development of a real-time PCR assay for Pseudomonas cichorii, the causal agent of midrib rot in greenhouse-grown lettuce, and its detection in irrigating water. Plant Pathol 60:453–461

    Article  CAS  Google Scholar 

  • Fraikin N, Goormaghtigh F, Van Melderen L (2020) Type II toxin-antitoxin systems: evolution and revolutions. J Bacteriol 202:e00763-e819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham KSH, Colom A, Pogenberg V, Cianci M, Tuukkanen A, Boudehen YM, Peixoto A, Botella L, Svergun DI, Schnappinger D, Schneider TR, Genevaux P, de Carvalho LPS, Wilmanns M, Parret AHA, Neyrolles O (2019) An NAD+ phosphorylase toxin triggers Mycobacterium tuberculosis cell death. Mol Cell 73:1282-1291.e1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghafourian S, Raftari M, Sadeghifard N, Sekawi Z (2014) Toxin-antitoxin systems: classification, biological function and application in biotechnology. Curr Issues Mol Biol 16:9–14

    PubMed  Google Scholar 

  • Hikichi Y, Wali UM, Ohnishi K, Kiba A (2013) Mechanism of disease development caused by a multihost plant bacterium, Pseudomonas cichorii, and its virulence diversity. J Gen Plant Pathol 79:379–389

    Article  CAS  Google Scholar 

  • Jeon H, Choi E, Hwang J (2021) Identification and characterization of VapBC toxin-antitoxin system in Bosea sp. PAMC 26642 isolated from Arctic lichens. RNA 27:1374–1389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jurėnas D, Fraikin N, Goormaghtigh F, Van Melderen L (2022) Biology and evolution of bacterial toxin-antitoxin systems. Nat Rev Microbiol 20:335–350

    Article  PubMed  Google Scholar 

  • Klimina KM, Poluektova EU, Danilenko VN (2017) Bacterial toxin–antitoxin systems: properties, functional significance, and possibility of use (Review). Appl Biochem Microbiol 53:494–505

    Article  CAS  Google Scholar 

  • Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L (2011) Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513–5525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LeRoux M, Culviner PH, Liu YJ, Littlehale ML, Laub MT (2020) Stress can induce transcription of toxin-antitoxin systems without activating toxin. Mol Cell 79:280-292.e288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milunovic B, diCenzo GC, Morton RA, Finan TM (2014) Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol 196:811–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthuramalingam M, White JC, Bourne CR (2016) Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins (basel) 8(7):214

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthuramalingam M, White JC, Murphy T, Ames JR, Bourne CR (2019) The toxin from a ParDE toxin-antitoxin system found in Pseudomonas aeruginosa offers protection to cells challenged with anti-gyrase antibiotics. Mol Microbiol 111:441–454

    Article  PubMed  CAS  Google Scholar 

  • Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pauwelyn E, Huang CJ, Ongena M, Leclère V, Jacques P, Bleyaert P, Budzikiewicz H, Schäfer M, Höfte M (2013) New linear lipopeptides produced by Pseudomonas cichorii SF1-54 are involved in virulence, swarming motility, and biofilm formation. Mol Plant Microbe Interact 26:585–598

    Article  PubMed  CAS  Google Scholar 

  • Ramkumar G, Lee SW, Weon H-Y, Kim B-Y, Lee YHJPP (2015) First report on the whole genome sequence of Pseudomonas cichorii strain JBC1 and comparison with other Pseudomonas species. Plant Pathol 64:63–70

    Article  CAS  Google Scholar 

  • Rosendahl S, Tamman H, Brauer A, Remm M, Hõrak R (2020) Chromosomal toxin-antitoxin systems in Pseudomonas putida are rather selfish than beneficial. Sci Rep 10:9230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sala A, Bordes P, Genevaux P (2014) Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (basel) 6:1002–1020

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuster CF, Bertram R (2013) Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 340:73–85

    Article  PubMed  CAS  Google Scholar 

  • Sevin EW, Barloy-Hubler F (2007) RASTA-Bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8:R155

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh G, Yadav M, Ghosh C, Rathore JS (2021) Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. Curr Res Microb Sci 2:100047

    PubMed  PubMed Central  CAS  Google Scholar 

  • Skjerning RB, Senissar M, Winther KS, Gerdes K, Brodersen DE (2019) The RES domain toxins of RES-Xre toxin-antitoxin modules induce cell stasis by degrading NAD+. Mol Microbiol 111:221–236

    Article  PubMed  CAS  Google Scholar 

  • Song S, Wood TK (2020a) A primary physiological role of toxin/antitoxin systems is phage inhibition. Front Microbiol 11:1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Song S, Wood TK (2020b) Toxin/antitoxin system paradigms: toxins bound to antitoxins are not likely activated by preferential antitoxin degradation. Adv Biosyst 4:e1900290

    Article  PubMed  Google Scholar 

  • Srivastava A, Pati S, Kaushik H, Singh S, Garg LC (2021) Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 105:1803–1821

    Article  PubMed  CAS  Google Scholar 

  • Trantas EA, Sarris PF, Mpalantinaki EE, Pentari MG, Ververidis FN, Goumas DE (2013) A new genomovar of Pseudomonas cichorii, a causal agent of tomato pith necrosis. Eur J Plant Pathol 137:477–493

    Article  Google Scholar 

  • Wang X, Wood TK (2011) Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. App Environ Microbiol 77:5577–5583

    Article  CAS  Google Scholar 

  • Winther KS, Gerdes K (2011) Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci 108:7403–7407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winther KS, Brodersen DE, Brown AK, Gerdes K (2013) VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat Commun 4:2796

    Article  PubMed  Google Scholar 

  • Xie Y, Wei Y, Shen Y, Li X, Zhou H, Tai C, Deng Z, Ou HY (2018) TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res 46:D749-d753

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79

    Article  PubMed  CAS  Google Scholar 

  • Yu SM, Lee YH (2012) First report of Pseudomonas cichorii associated with leaf spot on soybean in South Korea. Plant Dis 96:142

    Article  PubMed  Google Scholar 

  • Zadeh RG, Kalani BS, Ari MM, Talebi M, Razavi S, Jazi FM (2022) Isolation of persister cells within the biofilm and relative gene expression analysis of type II toxin/antitoxin system in Pseudomonas aeruginosa isolates in exponential and stationary phases. J Glob Antimicrob Resist 28:30–37

    Article  PubMed  CAS  Google Scholar 

  • Zhang S-P, Wang Q, Quan S-W, Yu X-Q, Wang Y, Guo D-D, Peng L, Feng H-Y, He Y-X (2020) Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. Biophys Rep 6:68–79

    Article  CAS  Google Scholar 

  • Zhou J, Li S, Li H, Jin Y, Bai F, Cheng Z, Wu W (2021) Identification of a toxin-antitoxin system that contributes to persister formation by reducing NAD in Pseudomonas aeruginosa. Microorganisms 9(4):753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Yong Hun Lee of Division of Biotechnology in Chonbuk National University for providing the wild type Pseudonomas cichrorii JBC1. We also thank Anoth Maharjan of our colleagues for critical reading and correcting of this manuscript. This research was supported by grants from the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM536221 and Korea Biomedical Scientist Fellowship Program) and was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01595802 and No. PJ0157712022)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

WC: conceptualization, data curation, validation, formal analysis, visualization, and writing-original draft. JK: writing-review and editing. JL: data curation, validation, and function acquisition. JP: conceptualization, data curation, validation, writing—review and editing, funding acquisition, and supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jung-Ho Park.

Ethics declarations

Conflict of interest

Wonho Choi declares that he/she has no conflict of interest. Jae-hui Kim declares that he/she has no conflict of interest. Ju Seok Lee declares that he/she has no conflict of interest. Jung-Ho Park declares that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, W., Kim, Jh., Lee, J.S. et al. Identification of chromosomal type II toxin–antitoxin system from plant pathogenic Pseudomonas cichorii JBC 1. Mol. Cell. Toxicol. (2022). https://doi.org/10.1007/s13273-022-00324-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-022-00324-z

Keywords

  • Toxin
  • Antitoxin
  • TA finder
  • Pseudomonas cichorii
  • Escherichia coli