Skip to main content
Log in

Regulatory role of Wdr24 in autophagy activity during zebrafish embryogenesis

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

TOR and autophagy are essential pathways to mediate anabolic and catabolic reactions, respectively, in response to various nutritional stimuli. Vertebrate development requires such reactions to achieve the common goal of generating an independent organism from a single fertilized egg.

Methods

Using the zebrafish as an animal model, we characterized the role of Wdr24, a component of the GATOR2 complex that reportedly activates TORC1.

Results

Sequence analysis and subcellular localization of zebrafish Wdr24 suggested functional resemblance to its mammalian counterpart. We found that wdr24 expression commences during early embryogenesis, implicating its requirement. Accordingly, wdr24 knockdown induced defective embryogenesis accompanied by massive cell death. The developmental defects induced by wdr24 knockdown were attributable, at least in part, to dysregulated autophagy, which could be partially restored by wdr24 overexpression.

Conclusion

These findings suggest that a conserved role of Wdr24 may be a critical part of the cellular metabolism in different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, C., Bartholomew, C. R., Zhou, W. & Klionsky, D. J. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 5, 520–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Boglev, Y. et al. Autophagy induction is a Tor-and Tp53-independent cell survival response in a zebrafish model of disrupted ribosome biogenesis. PLoS Genet 9, e1003279, doi:10.1371/journal.pgen.1003279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Skobo, T. et al. Zebrafish ambra1a and ambra1b knockdown impairs skeletal muscle development. PLoS One 9, e99210, doi:10.1371/journal.pone.0099210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saxton, R. A. & Sabatini, D. M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 168, 960–976, doi:10.1016/j.cell.2017.02.004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laplante, M. et al. DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab 16, 202–212, doi:10.1016/j.cmet. 2012.07.008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bar-Peled, L. et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106, doi:10.1126/science.1232044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Panchaud, N., Peli-Gulli, M. P. & De Virgilio, C. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 12, 2948–2952, doi:10.4161/cc.26000 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chantranupong, L. et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9, 1–8, doi: 10.1016/j.celrep.2014.09.014 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei, Y. et al. TORC1 regulators Iml1/GATOR1 and GATOR2 control meiotic entry and oocyte development in Drosophila. Proc Natl Acad Sci U S A 111, E5670–5677, doi:10.1073/pnas.1419156112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Platani, M., Trinkle-Mulcahy, L., Porter, M., Jeyaprakash, A. A. & Earnshaw, W. C. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes. J Cell Biol 210, 45–62, doi:10.1083/jcb. 201410001 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Wei, Y., Reveal, B., Cai, W. & Lilly, M. A. The GATOR1 Complex Regulates Metabolic Homeostasis and the Response to Nutrient Stress in Drosophila melanogaster. G3 (Bethesda) 6, 3859–3867, doi:10.1534/g3.116.035337 (2016).

    Article  CAS  Google Scholar 

  12. Cai, W., Wei, Y., Jarnik, M., Reich, J. & Lilly, M. A. The GATOR2 Component Wdr24 Regulates TORC1 Activity and Lysosome Function. PLoS Genet 12, e1006036, doi:10.1371/journal.pgen.1006036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iida, T. & Lilly, M. A. missing oocyte encodes a highly conserved nuclear protein required for the maintenance of the meiotic cycle and oocyte identity in Drosophila. Development 131, 1029–1039, doi:10.1242/dev.01001 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Senger, S. et al. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis. Development 138, 2133–2142, doi:10.1242/dev.057372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robu, M. E. et al. p53 activation by knockdown technologies. PLoS Genet 3, e78, doi:10.1371/journal.pgen.0030078 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741, doi:10.1016/j.cell. 2011.10.026 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, P. & Zhang, H. You are what you eat: multifaceted functions of autophagy during C. elegans development. Cell Res 24, 80–91, doi:10.1038/cr.2013.154 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. McPhee, C. K. & Baehrecke, E. H. Autophagy in Drosophila melanogaster. Biochim Biophys Acta 1793, 1452–1460, doi:10.1016/j.bbamcr.2009.02.009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Behrends, C., Sowa, M. E., Gygi, S. P. & Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76, doi:10.1038/nature09204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253–310, doi:10.1002/aja.1002030302 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, Y. I. et al. Developmental roles of D-bifunctional protein-A zebrafish model of peroxisome dysfunction. Mol Cells 37, 74–80, doi:10.14348/molcells.2014.2300 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, D. et al. Fis1 depletion in osteoarthritis impairs chondrocyte survival and peroxisomal and lysosomal function. J Mol Med (Berl) 94, 1373–1384, doi:10.1007/s00109-016-1445-9 (2016).

    Article  CAS  Google Scholar 

  23. Kim, M. J., Kang, K. H., Kim, C. H. & Choi, S. Y. Real-time imaging of mitochondria in transgenic zebrafish expressing mitochondrially targeted GFP. Biotechniques 45, 331–334, doi:10.2144/000112909 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Bhandari, S. et al. The fatty acid chain elongase, Elovl1, is required for kidney and swim bladder development during zebrafish embryogenesis. Organogenesis 12, 78–93, doi:10.1080/15476278.2016.1172164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, Y. I. et al. Cartilage development requires the function of Estrogen-related receptor alpha that directly regulates sox9 expression in zebrafish. Sci Rep 5, 18011, doi:10.1038/srep18011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Kyu Choe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YI., Nam, IK., Um, JY. et al. Regulatory role of Wdr24 in autophagy activity during zebrafish embryogenesis. Mol. Cell. Toxicol. 15, 85–92 (2019). https://doi.org/10.1007/s13273-019-0010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-019-0010-3

Keywords

Navigation