Multi-omics approaches for understanding environmental exposure and human health


Purpose of review

Exposure to toxic substances from different environmental sources has an enormous impact on the public health, and is considered to be an important social issue. Therefore, omics approaches are used to understand relationships between diseases and environmental factors, but single omics analysis may have limitations in comprehensively interpreting specific biological phenomena. Multi-omics approaches, on the other hand, combines various single omics analyses in order to understand holistic biological mechanisms, which is sequentially assessed starting at the DNA sequence level and proceeding through epigenetic regulation, gene expression, protein expression and metabolic effects.

Recent findings

Integration of multiple omics data is invaluable for comprehensively understanding causal relationship between environmental exposure and environmental health. Furthermore, cohort based multi-omics studies are in activation worldwide and the approaches could strengthen comprehension on how environmental factors affects human health by alteration of molecular-level of biological mechanisms.

This is a preview of subscription content, log in to check access.


  1. 1.

    Marsit, C. J. Influence of environmental exposure on human epigenetic regulation. J Exp Biol 218, 71–79 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hong, J. Y. et al. Environmental risk assessment of toxicity exposure: High-throughput expression profiling. BioChip J 10, 74–80 (2016).

    Article  CAS  Google Scholar 

  3. 3.

    MacMahon, B. Gene-environment interaction in human disease. J Psychiat Res 6, 393–402 (1968).

    Article  Google Scholar 

  4. 4.

    Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nat Rev Genet 8, 253 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rotroff, D. M. & Motsinger-Reif, A. A. Embracing integrative multiomics approaches. Int J Genomics 2016 (2016), Published online.

  6. 6.

    Horgon, R. & Kenny, L. SAC review: Omic technologies: genomics, transcriptomics. Proteomics and Metabolomics. TOG 13, 25 (2011).

    Google Scholar 

  7. 7.

    Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol 18, 83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bradburne, C. et al. Overview of ‘omics technologies for military occupational health surveillance and medicine. Mil Med 180, 34–48 (2015).

    Article  PubMed  Google Scholar 

  9. 9.

    Kan, M., Shumyatcher, M. & Himes, B. E. Using omics approaches to understand pulmonary diseases. Respir Res 18, 149 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Vlaanderen, J. et al. Application of OMICS technologies in occupational and environmental health research; current status and projections. Occup Environ Med 67, 136–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Gibney, E. & Nolan, C. Epigenetics and gene expression. Heredity 105, 4 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33, 245 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Hong, J. Y. et al. Association analysis of toluene exposure time with high-throughput mRNA expressions and methylation patterns using in vivo samples. Environ Res 146, 59–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Lema, C. & Cunningham, M. J. MicroRNAs and their implications in toxicological research. Toxicol Lett 198, 100–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Lim, D. H. & Maher, E. R. DNA methylation: a form of epigenetic control of gene expression. The Obstetrician & Gynaecologist 12, 37–42 (2010).

    Article  Google Scholar 

  16. 16.

    Kim, S. Y. et al. Identification of potential biomarkers for xylene exposure by microarray analyses of gene expression and methylation. Mol Cell Toxicol 12, 15–20 (2016).

    Article  CAS  Google Scholar 

  17. 17.

    Shen, L. et al. DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst 94, 755–761(2002).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Hirst, M. & Marra, M. A. Next generation sequencing based approaches to epigenomics. Brief Funct Genomics 9, 455–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Zhang, L. et al. Systems biology of human benzene exposure. Chem Biol Interact 184, 86–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat Biotechnol 28, 1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Ma, L. et al. Histone methylation in nickel-smelting industrial workers. PloS One 10, e0140339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Vaissière, T., Sawan, C. & Herceg, Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res, Rev Mutat Res 659, 40–48 (2008).

    Article  CAS  Google Scholar 

  23. 23.

    An, Y. R. et al. Functional analysis of endocrine disruptor pesticides affected transcriptome and microRNA regulation in human hepatoma cell line. Mol Cell Toxicol 10, 393–400 (2014).

    Article  CAS  Google Scholar 

  24. 24.

    Sturchio, E. et al. Arsenic exposure triggers a shift in microRNA expression. Sci Total Environ 472, 672–680 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Vrijens, K., Bollati, V. & Nawrot, T. S. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Persp 123, 399 (2015).

    Article  CAS  Google Scholar 

  26. 26.

    Dong, Z. & Chen, Y. Transcriptomics: advances and approaches. Sci China Life Sci 56, 960–967 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Wild, C. P., Scalbert, A. & Herceg, Z. Measuring the exposome: a powerful basis for evaluating environmental exposures and cancer risk. Environ Mol Mutagen 54, 480–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    McHale, C. M., Zhang, L., Hubbard, A. E. & Smith, M. T. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res, Rev Mutat Res 705, 172–183 (2010).

    Article  CAS  Google Scholar 

  29. 29.

    Clish, C. B. Metabolomics: an emerging but powerful tool for precision medicine. Molecular Case Studies 1, a000588 (2015).

    Article  PubMed  Google Scholar 

  30. 30.

    Kan, Z. et al. Multi-omics profiling of younger Asian breast cancers reveals distinctive molecular signatures. Nat Commun 9, (2018), Published online.

  31. 31.

    Mesnage, R. et al. Integrated transcriptomics and metabolomics reveal signatures of lipid metabolism dysregulation in HepaRG liver cells exposed to PCB 126. Arch Toxicol 92, 2533–2547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Koshiba, S. et al. Omics research project on prospective cohort studies from the Tohoku Medical Megabank Project. Genes Cells 23, 406–417 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Maitre, L. et al. Human Early Life Exposome (HELIX) study: a European population-based exposome cohort. BMJ Open 8, e021311 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Seung Yong Hwang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koh, E.J., Hwang, S.Y. Multi-omics approaches for understanding environmental exposure and human health. Mol. Cell. Toxicol. 15, 1–7 (2019).

Download citation


  • Multi-omics
  • Integrated analysis
  • Next Generation Sequencing (NGS)
  • Environmental exposure
  • Environmental health
  • Risk assessment