Skip to main content

Complete genome sequence of Methylobacterium sp. 17Sr1-43, a radiation-resistant bacterium

Abstract

Backgrounds

The genus Methylobacterium is composed of a variety of pink-pigmented and facultatively methylotrophic bacteria. Most of the species of these genera have been shown to be either gamma radiation resistant or UV radiation resistant or both. Strain Methylobacterium sp. 17Sr1-43 was isolated from a gamma- irradiated soil sample collected at Seoul Women’s University, South Korea.

Methods

The complete genome of strain Methylobacterium sp. 17Sr1-43 was sequenced and assembled using Pacific Biosciences RS II system. The genome sequence was annotated using JGI GenePRIMP, Prodigal, and Genomes-Expert Review (IMG-ER) platform. The protein-coding genes were identified using Pfam and COG databases implemented in the IMG and NCBI systems.

Results

The complete genome of strain Methylobacterium sp. 17Sr1-43 was found to comprise a complete circular chromosome of 5,539,695 bp, with 5,103 coding sequences (CDs) and 5,186 genes. Many identified genes involved either in DNA repair or the cellular response to ionization radiation. However, contributions by genes involved in cell wall structure/function, cell division, and intermediary metabolism were also evident. Some identified genes were previously have been associated with IR resistance or recovery from IR exposure, including the RecBCD pathway and UmuCD system.

Conclusion

The new strains of Methylobacterium sp. 17Sr1-43 showed both gamma and UV-C irradiation resistance, and their complete genome sequence annotation features correspondingly showed the presence of the genes involved in the radiation-resistance.

This is a preview of subscription content, access via your institution.

References

  1. Ul Hussain Shah, A. M. et al. A Mur regulator protein in the extremophilic bacterium Deinococcus radiodurans. PloS One 9, e106341 (2014).

    Google Scholar 

  2. Ortiz de Orue Lucana, D., Wedderhoff, I. & Groves, M. R. ROS–Mediated Signalling in Bacteria: Zinc–Containing Cys–X–X–Cys Redox Centres and Iron–Based Oxidative Stress. J Signal Transduct Article ID 605905, 9 pages (2012).

    Google Scholar 

  3. Waldeck, W. et al. ROS–mediated killing efficiency with visible light of bacteria carrying different red fluorochrome proteins. J Photochem Photobiol B 109, 28–33 (2012).

    Article  PubMed  CAS  Google Scholar 

  4. Yu, S.–L. & Lee, S.–K. Ultraviolet radiation: DNA damage, repair, and human disorders. Mol Cell Toxicol 13, 21–28 (2017).

    Article  CAS  Google Scholar 

  5. Kim, M. K. et al. Complete genome sequence of Hymenobacter sp. DG25B, a novel bacterium with gamma–radiation resistance isolated from soil in South Korea. J Biotech 217, 98–99 (2016).

    CAS  Google Scholar 

  6. Kim, M. K. et al. Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity. Mol Cell Toxicol 11, 315–321 (2015).

    Article  CAS  Google Scholar 

  7. Kim, M. K., Back, C. G., Jung, H. Y. & Srinivasan, S. Complete genome sequence of Spirosoma radiotolerans, a gamma–radiation–resistant bacterium isolated from rice field in South Korea. J Biotech 208, 11–12 (2015).

    Article  CAS  Google Scholar 

  8. Kim, M. K. et al. Complete genome sequence of Hymenobacter sedentarius DG5BT, a bacterium resistant to gamma radiation. Mol Cell Toxicol 13, 199–205 (2017).

    Article  CAS  Google Scholar 

  9. Srinivasan, S., Lee, S.–Y., Kim, M. K. & Jung, H.–Y. Complete genome sequence of Hymenobacter sp. DG25A, a gamma radiation–resistant bacterium isolated from soil. Mol Cell Toxicol 13, 65–72 (2017).

    CAS  Google Scholar 

  10. Srinivasan, S. et al. Deinococcus radioresistens sp. nov., a UV and gamma radiation–resistant bacterium isolated from mountain soil. Antonie van Leeuwenhoek 107, 539–545 (2015).

    PubMed  CAS  Google Scholar 

  11. Cha, S., Srinivasan, S., Seo, T. & Kim, M. K. Deinococcus soli sp. nov., a gamma–radiation–resistant bacterium isolated from rice field soil. Curr Microbiol 68, 777–783 (2014).

    PubMed  CAS  Google Scholar 

  12. Srinivasan, S., Lee, J. J., Lim, S., Joe, M. & Kim, M. K. Deinococcus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 62, 2844–2850 (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Srinivasan, S., Kim, M. K., Lim, S., Joe, M. & Lee, M. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 62, 1265–1270 (2012).

    Article  CAS  Google Scholar 

  14. Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26, 541–547 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Markowitz, V. M. et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25, 2271–2278 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Lowe, T. M. & Eddy, S. R. tRNAscan–SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955–964 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35, 3100–3108 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dillingham, M. S. & Kowalczykowski, S. C. RecBCD Enzyme and the Repair of Double–Stranded DNA Breaks. Microbiol Mol Biol Rev 72, 642–671 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. BATTISTA, J. R. & COX, M. M. in Radiation Risk Estimates in Normal and Emergency Situations (eds Arrigo A. Cigna & Marco Durante) 341–359 (Springer Netherlands, 2006).

    Google Scholar 

  22. Jia, H. et al. Rotations of the 2B sub–domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. J Mol Biol 411, 633–648 (2011).

    PubMed  CAS  Google Scholar 

  23. Wilkinson, M., Chaban, Y. & Wigley, D. B. Mechanism for nuclease regulation in RecBCD. eLife 5, e18227 (2016).

    Google Scholar 

  24. Leung, W. Y., Chung, L. H., Kava, H. W. & Murray, V. RecBCD (Exonuclease V) is inhibited by DNA adducts produced by cisplatin and ultraviolet light. Biochem Biophys Res Commun 495, 666–671 (2018).

    Article  PubMed  CAS  Google Scholar 

  25. Yang, L. et al. Alteration of chi recognition by RecBCD reveals a regulated molecular latch and suggests a channel–bypass mechanism for biological control. Proc Natl Acad Sci U S A 109, 8907–8912 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wigley, D. B. Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11, 9–13 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathiyaraj Srinivasan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, MS., Srinivasan, S. Complete genome sequence of Methylobacterium sp. 17Sr1-43, a radiation-resistant bacterium. Mol. Cell. Toxicol. 14, 453–457 (2018). https://doi.org/10.1007/s13273-018-0050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0050-0

Keywords

  • Methylobacterium
  • Radiation resistance
  • γ-Radiation
  • Radiation resistance
  • Nucleotide excision repair
  • PacBio RS II
  • Complete genome