Skip to main content

Complete genome sequence of Microvirga sp. 17mud 1–3, a radiation-resistant bacterium

Abstract

Backgrounds

The genera Deinococcus Hymenobacter, Spirosoma, and Rubrobacter are renowned as an extremophilic bacteria. Most of the species of these genera have been shown to be either gamma radiation resistant or UV radiation resistant or both. Strain 17mud 1–3 was isolated from gamma-irradiated mud sample collected at Boryeong beach, South Korea.

Methods

The genome of strain 17mud 1–3 was sequenced and assembled using Pacific Biosciences RS II system. The genome sequence was annotated using Genomes-Expert Review (IMG-ER) platform, Prodigal, and JGI GenePRIMP pipeline. The protein-coding genes were identified using Prodigal, Pfam and COG databases implemented in the IMG systems.

Results

The complete genome consists of a circular chromosome (4,403,107 bp) encoding 4,368 coding sequences (CDs) and 4,301genes.

Conclusion

The new strains showed both gamma and UV-C irradiation resistance and their complete genome sequence annotation features showed the presence of the genes involved in the radiation-resistance.

This is a preview of subscription content, access via your institution.

References

  1. Ortiz de Orue Lucana, D., Wedderhoff, I. & Groves, M. R. ROS-Mediated Signalling in Bacteria: Zinc-Containing Cys-X-X-Cys Redox Centres and Iron-Based Oxidative Stress. J Signal Transduct, Article ID 605905, 9 pages (2012).

    Google Scholar 

  2. Waldeck, W. et al. ROS-mediated killing efficiency with visible light of bacteria carrying different red fluorochrome proteins. J Photochem Photobiol B 109, 28–33 (2012).

    Article  PubMed  CAS  Google Scholar 

  3. Yu, S.-L. & Lee, S.-K. Ultraviolet radiation: DNA damage, repair, and human disorders. Mol Cell Toxicol 13, 21–28 (2017).

    Article  CAS  Google Scholar 

  4. Kim, M. K. et al. Complete genome sequence of Hymenobacter sp. DG25B, a novel bacterium with gammaradiation resistance isolated from soil in South Korea. J Biotech 217, 98–99 (2016).

    CAS  Google Scholar 

  5. Kim, M. K. et al. Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity. Mol Cell Toxicol 11, 315–321 (2015).

    Article  CAS  Google Scholar 

  6. Kim, M. K., Back, C. G., Jung, H. Y. & Srinivasan, S. Complete genome sequence of Spirosoma radiotolerans, a gamma-radiation-resistant bacterium isolated from rice field in South Korea. J Biotech 208, 11–12 (2015).

    Article  CAS  Google Scholar 

  7. Kim, M. K. et al. Complete genome sequence of Hymenobacter sedentarius DG5BT, a bacterium resistant to gamma radiation. Mol Cell Toxicol 13, 199–205 (2017).

    Article  CAS  Google Scholar 

  8. Srinivasan, S., Lee, S.-Y., Kim, M. K. & Jung, H.-Y. Complete genome sequence of Hymenobacter sp. DG25A, a gamma radiation-resistant bacterium isolated from soil. Mol Cell Toxicol 13, 65–72 (2017).

    CAS  Google Scholar 

  9. Zimmerman, J. M. & Battista, J. R. A ring-like nucleoid is not necessary for radioresistance in th. Deinococcaceae. BMC Microbiol 5, 17 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Daly, M. J. Death by protein damage in irradiated cells. DNA Repair 11, 12–21 (2012).

    Article  PubMed  CAS  Google Scholar 

  11. Zahradka, K. et al. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443, 569–573 (2006).

    PubMed  CAS  Google Scholar 

  12. Byrne, R. T. et al. Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair. eLife 3, e01322 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Singh, O. V. & Gabani, P. Extremophiles: radiation resistance microbial reserves and therapeutic implications. J App Microbiol 110, 851–861 (2011).

    Article  CAS  Google Scholar 

  14. Earl, A. M., Rankin, S. K., Kim, K. P., Lamendola, O. N. & Battista, J. R. Genetic evidence that the uvsEgene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol 184, 1003–1009 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Srinivasan, S. et al. Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil. Antonie van Leeuwenhoek 107, 539–545 (2015).

    PubMed  CAS  Google Scholar 

  16. Cha, S., Srinivasan, S., Seo, T. & Kim, M. K. Deinococcus soli sp. nov., a gamma-radiation-resistant bacterium isolated from rice field soil. Curr Microbiol 68, 777–783 (2014).

    PubMed  CAS  Google Scholar 

  17. Srinivasan, S., Lee, J. J., Lim, S., Joe, M. & Kim, M. K. Deinococcus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 62, 2844–2850 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. Srinivasan, S., Kim, M. K., Lim, S., Joe, M. & Lee, M. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 62, 1265–1270 (2012).

    Article  CAS  Google Scholar 

  19. Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26, 541–547 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Markowitz, V. M. et al. IMGER: a system for microbial genome annotation expert review and curation. Bioinformatics 25, 2271–2278 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955–964 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35, 3100–3108 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tatusov, R. L. et al. The COGdatabase: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petit, C. & Sancar, A. Nucleotide excision repair: from E. coli to man. Biochimie 81, 15–25 (1999).

    Article  CAS  Google Scholar 

  26. Battista, J. R. & Cox, M. M. in Radiation Risk Estimates in Normal and Emergency Situations (eds Arrigo A. Cigna & Marco Durante) 341–359 (Springer Netherlands, 2006).

    Google Scholar 

  27. Jia, H. et al. Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. J Mol Biol 411, 633–648 (2011).

    PubMed  CAS  Google Scholar 

  28. Truglio, J. J., Croteau, D. L., Va. Houten, B. & Kisker, C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 106, 233–252 (2006).

    PubMed  CAS  Google Scholar 

  29. Daly, M. J. A new perspective on radiation resistance based o. Deinococcus radiodurans. Nat Rev Microbiol 7, 237–245 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathiyaraj Srinivasan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sathiyaraj, G., Kim, M.K., Kim, JY. et al. Complete genome sequence of Microvirga sp. 17mud 1–3, a radiation-resistant bacterium. Mol. Cell. Toxicol. 14, 347–352 (2018). https://doi.org/10.1007/s13273-018-0038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0038-9

Keywords

  • Microvirga
  • Radiation resistance
  • γ-Radiation
  • Radiation resistance
  • Nucleotide excision repair
  • PacBio RS II
  • Complete genome