Molecular & Cellular Toxicology

, Volume 14, Issue 2, pp 233–239 | Cite as

Proteins isolated of Pueraria Radix possible to cause allergenic react with immunoglobulin E in human sera

Original Paper
  • 15 Downloads

Abstract

Backgrounds

Allergies occur when immunoglobulin E (IgE), which is part of the body’s immune system, binds to molecules. A protein in the foods, plants or pollen is usually the problem. This causes the release of inflammatory chemicals such as histamine. There are a few cases where allergies are cause by proteins derived from herbal medicine, but we do not know yet what protein causes the immune react to IgE.

Methods

Here, we demonstrate to confirm if the Pueraria Radix at the proteomic level triggers IgE immunoreactivity. Finally, we present the molecules of the Pueraria Radix-derived protein that trigger the IgE immune response. To prove our hypothesis, we used proteomic tools and SDS-PAGE stained with Coomassie blue and identified proteins using LC-MS/ MS. Proteins were separated from Pueraria Radix and allergic reaction sera were selected.

Results

We found three positive sera that showed an immune response to Pueraria Radix protein. Positive sera demonstrated a similar pattern of IgE reactivity and mostly restricted to a 50-70 kDa band. Therefore, we have identified number of different IgE binding proteins. Therefore, IgE binding proteins were identified such as enolase, hypothetical protein, DING protein and glycosyl transferase.

Conclusion

The results imply that Pueraria Radix can act as an allergen given the identification of IgE binding proteins among the isolated proteins of Pueraria Radix.

Keywords

Pueraria Radix Immunoglobulin E Herbal medicine Allergy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eisenberg, D. M. et al. Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. Jama 280, 1569–1575 (1998).CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang, J., Onakpoya, I. J., Posadzki, P. & Eddouks, M. The safety of herbal medicine: from prejudice to evidence. Evid Based Complement Alternat Med 2015, 316706 (2015).PubMedPubMedCentralGoogle Scholar
  3. 3.
    Wong, G. H. Adverse and allergic reactions in complementary and alternative medicine. J Allergy Clin Immunol 108, 149–150 (2001).CrossRefPubMedGoogle Scholar
  4. 4.
    Benner, M. H. & Lee, H. J. Anaphylactic reaction to chamomile tea. J Allergy Clin Immunol 52, 307–308 (1973).CrossRefPubMedGoogle Scholar
  5. 5.
    Dega, H., Laporte, J. L., Frances, C., Herson, S. & Chosidow, O. Ginseng as a cause for Stevens-Johnson syndrome? Lancet 347, 1344 (1996).CrossRefPubMedGoogle Scholar
  6. 6.
    Wang, L. et al. Allergens in red ginseng extract induce the release of mediators associated with anaphylactoid reactions. J Transl Med 15, 148 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang, L. et al. Ginsenoside F2 induces the release of mediators associated with Anaphylactoid reactions. Fitoterapia 121, 223–228 (2017).CrossRefPubMedGoogle Scholar
  8. 8.
    Gell, P. G. H. & Coombs, R. R. A. Clinical Aspects of Immunology, Edn. 2nd. (Blackwell Scientific, Oxford; Edinburgh; 1968).Google Scholar
  9. 9.
    Stanworth, D. R. The discovery of IgE. Allergy 48, 67–71 (1993).CrossRefPubMedGoogle Scholar
  10. 10.
    Amarasekera, M. Immunoglobulin E in health and disease. Asia Pacific Allergy 1, 12–15 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wong, K. H., Li, G. Q., Li, K. M., Razmovski-Naumovski, V. & Chan, K. Kudzu root: traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J Ethnopharmacol 134, 584–607 (2011).CrossRefPubMedGoogle Scholar
  12. 12.
    Kang, K. A. et al. Protective effect of puerariae radix on oxidative stress induced by hydrogen peroxide and streptozotocin. Biol Pharm Bull 28, 1154–1160 (2005).CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang, R. W. et al. A comparative study on aqueous root extracts of Pueraria thomsonii and Pueraria lobata by antioxidant assay and HPLC fingerprint analysis. J Ethnopharmacol 96, 133–138 (2005).CrossRefPubMedGoogle Scholar
  14. 14.
    Qicheng, F. Some current study and research approaches relating to the use of plants in the traditional Chinese medicine. J Ethnopharmacol 2, 57–63 (1980).CrossRefPubMedGoogle Scholar
  15. 15.
    Lee, O. H., Seo, D. H., Park, C. S. & Kim, Y. C. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. BioFactors 36, 459–467 (2010).CrossRefPubMedGoogle Scholar
  16. 16.
    Kim, K.-W. et al. Osteogenic differentiation of human mesenchymal stem cells promoted by the crude extracts of the mixture of Cortex mori radicis, Patrinia saniculaefolia. Mol Cell Toxicol 11, 475–482 (2015).CrossRefGoogle Scholar
  17. 17.
    Kim, K.-H., Park, J. Y., Lee, I.-S., Kim, Y. & Jang, H.-J. Proteins derived from Prunus armeniaca kernel are possible to cause Immunoglobulin E reactivity in human sera. Mol Cell Toxicol 13, 213–220 (2017).CrossRefGoogle Scholar
  18. 18.
    Wang, J. et al. Long non-coding RNA NEAT1 decreases the chemosensitivity of gastric cancer cells via regulating P-glycoprotein expression. Mol Cell Toxicol 13, 317–325 (2017).CrossRefGoogle Scholar
  19. 19.
    Lee, S. E. et al. Effect of crotonaldehyde on the induction of COX-2 expression in human endothelial cells. Mol Cell Toxicol 13, 345–350 (2017).CrossRefGoogle Scholar
  20. 20.
    Kwon, D. & Liew, H. miRNA profile of neuroprotection mechanism of echinomycin in Parkinson’s disease. Mol Cell Toxicol 13, 229–238 (2017).CrossRefGoogle Scholar
  21. 21.
    Kang, H., Park, B.-R., Yoo, H.-S., Kwon, K.-R. & Kang, I.-C. Anti-angiogenic function of a Korean Ginseng and Toad venom complex, Doksamsumsu-dan (DSSSD) analyzed by a forwarded phase antibody microarray. BioChip J 9, 222–231 (2015).CrossRefGoogle Scholar
  22. 22.
    Lee, N. R. et al. House dust mite allergen suppresses neutrophil apoptosis by cytokine release via PAR2 in normal and allergic lymphocytes. Immunol Res 64, 123–132 (2016).CrossRefPubMedGoogle Scholar
  23. 23.
    Bahk, Y. Y. et al. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 4, 3299–3307 (2004).CrossRefPubMedGoogle Scholar
  24. 24.
    Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R. & Roepstorff, P. Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34, 105–116 (1999).CrossRefPubMedGoogle Scholar
  25. 25.
    Ko, J. W. et al. Ssanghwa-Tang, a traditional herbal formula, suppresses cigarette smoke-induced airway inflammation via inhibition of MMP-9 and Erk signaling. Mol Cell Toxicol 13, 295–304 (2017).CrossRefGoogle Scholar
  26. 26.
    Hulme, J. Recent Advances in the Detection of Methicillin Resistant Staphylococcus aureus (MRSA). Bio-Chip J 11, 89–100 (2017).Google Scholar
  27. 27.
    Jang, I. et al. Application of Paper EWOD (Electrowetting-on-Dielectrics) Chip: Protein Tryptic Digestion and its Detection Using MALDI-TOF Mass Spectrometry. BioChip J 11, 146–152 (2017).CrossRefGoogle Scholar
  28. 28.
    Byeon, J., Kang, K. H., Jung, H.-K. & Suh, J.-K. Assessment for quantification of biopharmaceutical protein using a microvolume spectrometer on microfluidic slides. BioChip J 11, 21–29 (2017).CrossRefGoogle Scholar
  29. 29.
    Akter, H., Yoo, Y. S., Park, W. S. & Kang, M. J. Cholecystokinin as a Potent Diagnostic Marker for Gastric Cancer. BioChip J 11, 14–20 (2017).CrossRefGoogle Scholar
  30. 30.
    Kang, Y. J. et al. Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep 5, 8069 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jensen, L. B. et al. Peanut cross-reacting allergens in seeds and sprouts of a range of legumes. Clin Exp Allergy 38, 1969–1977 (2008).CrossRefPubMedGoogle Scholar
  32. 32.
    Simon-Nobbe, B. et al. IgE-binding epitopes of enolases, a class of highly conserved fungal allergens. J Allergy Clin Immunol 106, 887–895 (2000).CrossRefPubMedGoogle Scholar
  33. 33.
    Baldo, B. A. & Baker, R. S. Inhalant allergies to fungi: reactions to bakers’ yeast (Saccharomyces cerevisiae) and identification of bakers’ yeast enolase as an important allergen. Int Arch Allergy Immunol 86, 201–208 (1988).CrossRefGoogle Scholar
  34. 34.
    Bernier, F. DING proteins: numerous functions, elusive genes, a potential for health. Cell Mol Life Sci 70, 3045–3056 (2013).CrossRefPubMedGoogle Scholar
  35. 35.
    Venkatesan, N., Siddiqui, S., Jo, T., Martin, J. G. & Ludwig, M. S. Allergen-induced airway remodeling in brown norway rats: structural and metabolic changes in glycosaminoglycans. Am J Respir Cell Mol Biol 46, 96–105 (2012).CrossRefPubMedGoogle Scholar
  36. 36.
    Sugahara, K. & Kitagawa, H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 10, 518–527 (2000).CrossRefPubMedGoogle Scholar
  37. 37.
    Jin, S. E., Son, Y. K., Min, B. S., Jung, H. A. & Choi, J. S. Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots. Arch Pharm Res 35, 823–837 (2012).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
  2. 2.Department of Science in Korean Medicine, Graduate SchoolKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations