Molecular & Cellular Toxicology

, Volume 14, Issue 2, pp 221–231 | Cite as

Comparative analysis of Adam33 mutations in murine lung cancer cell lines by droplet digital PCR, real-time PCR and Insight Onco™ NGS

  • Soo-Jin Kim
  • Eunhee Kim
  • Kyung-Taek Rim
Original Paper



In a mouse-based carcinogen bioassay, we can identify lung cancer-specific oncogenic driver mutations in circulating cell-free DNA in the blood prior to autopsy. These mutations could be used as an early biomarker for lung cancer.


We investigated single nucleotide variants in gDNA isolated from LA-4 and KLN205 cell lines, through whole exome sequencing.


SNVs of 15 representative genes related to lung cancer (such as Adam33) were confirmed. Among them, Adam33 increased the risk of chronic obstructive pulmonary disease (COPD), which is reported to be associated with lung cancer. Therefore, we selected Adam33, an asthma-related gene, for this study. The sensitivity of real-time PCR, droplet digital PCR and Insight Onco™ NGS to detect rare mutations of Adam33 was 10%, 1%, and 0.05%, respectively.


We confirmed that the Insight Onco™ technique is a sensitive method that can be used to detect lung-specific rare mutations in vitro.


A disintegrin and metalloproteinase 33 (Adam33) Mouse Non-small-cell lung cancer (NSCLC) PNA-mediated mutant enrichment NGS (Insight Onco™ NGS) Whole exome sequencing (WES) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jung, K. W. et al. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2014. Cancer Res Treat 49, 292–305 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F. & Wong, K. K. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14, 535–546 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wakamatsu, N., Devereux, T. R., Hong, H. H. & Sills, R. C. Overview of the molecular carcinogenesis of mouse lung tumor models of human lung cancer. Toxicol Pathol 35, 75–80 (2007).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    de Seranno, S. & Meuwissen, R. Progress and applications of mouse models for human lung cancer. Eur Respir J 35, 426–443 (2010).CrossRefPubMedGoogle Scholar
  5. 5.
    Kellar, A., Egan, C. & Morris, D. Preclinical Murine Models for Lung Cancer: Clinical Trial Applications. Biomed Res Int 2015, 621324 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stoner, G. D., Kikkawa, Y., Kniazeff, A. J., Miyai, K. & Wagner, R. M. Clonal isolation of epithelial cells from mouse lung adenoma. Cancer Res 35, 2177–2185 (1975).PubMedGoogle Scholar
  7. 7.
    Kaneko, T. & LePage, G. A. Growth characteristics and drug responses of a murine lung carcinoma in vitro and in vivo. Cancer Res 38, 2084–2090 (1978).PubMedGoogle Scholar
  8. 8.
    Rabbani, B., Tekin, M. & Mahdieh, N. The promise of whole-exome sequencing in medical genetics. J Hum Genet 59, 5–15 (2014).CrossRefPubMedGoogle Scholar
  9. 9.
    Sheikine, Y. et al. EGFR Testing in Advanced Non-Small-Cell Lung Cancer, A Mini-Review. Clin Lung Cancer 17, 483–492 (2016).CrossRefPubMedGoogle Scholar
  10. 10.
    Vendrell, J. A. et al. Circulating Cell Free Tumor DNA Detection as a Routine Tool for Lung Cancer Patient Management. Int J Mol Sci 18, 264 (2017).CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wang, J. et al. IDH1 mutation detection by droplet digital PCR in glioma. Oncotarget 6, 39651–39660 (2015).PubMedPubMedCentralGoogle Scholar
  12. 12.
    Miyazawa, H. et al. Peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based detection test for gefitinib-refractory T790M epidermal growth factor receptor mutation. Cancer Sci 99, 595–600 (2008).CrossRefPubMedGoogle Scholar
  13. 13.
    Westcott, P. M. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).CrossRefPubMedGoogle Scholar
  14. 14.
    Yoon, S. H. et al. Peptide Nucleic Acid Clamping Versus Direct Sequencing for the Detection of EGFR Gene Mutation in Patients with Non-small Cell Lung Cancer. Cancer Res Treat 47, 661–669 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kang, S. et al. Targeted sequencing with enrichment PCR: a novel diagnostic method for the detection of EGFR mutations. Oncotarget 6, 13742–13749 (2015).PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee, B. et al. KRAS Mutation Detection in Non-small Cell Lung Cancer Using a Peptide Nucleic Acid-Mediated Polymerase Chain Reaction Clamping Method and Comparative Validation with Next-Generation Sequencing. Korean J Pathol 48, 100–107 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guttery, D. S. et al. Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer. Clin Chem 61, 974–982 (2015).CrossRefPubMedGoogle Scholar
  18. 18.
    Castellanos-Rizaldos, E. et al. Enhanced ratio of signals enables digital mutation scanning for rare allele detection. J Mol Diagn 17, 284–292 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Awasthi, S., Tripathi, P., Ganesh, S. & Husain, N. Association of ADAM33 gene polymorphisms with asthma in Indian children. J Hum Genet 56, 188–195 (2011).CrossRefPubMedGoogle Scholar
  20. 20.
    Siena, L. et al. Gemcitabine sensitizes lung cancer cells to Fas/FasL system-mediated killing. Immunology 141, 242–255 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moses, M. A. & Roy, R. Adamts-7 as a Biomarker for Cancers of Epithelial Origin, (2006).Google Scholar
  22. 22.
    Lihong, H. et al. Proteomics approaches for identification of tumor relevant protein targets in pulmonary squamous cell carcinoma by 2D-DIGE-MS. PLoS One 9, e95121 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li, X.-J. & Kearney, P. Diagnostic lung cancer panel and methods for its use, 9403889 (2016).Google Scholar
  24. 24.
    Tuscano, J. M. et al. CD22 antigen is broadly expressed on lung cancer cells and is a target for antibody-based therapy. Cancer Res 72, 5556–5565 (2012).CrossRefPubMedGoogle Scholar
  25. 25.
    Kato, T. et al. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res 67, 8544–8553 (2007).CrossRefPubMedGoogle Scholar
  26. 26.
    Campa, D. et al. A comprehensive study of polymorphisms in ABCB1, ABCC2 and ABCG2 and lung cancer chemotherapy response and prognosis. Int J Cancer 131, 2920–2928 (2012).CrossRefPubMedGoogle Scholar
  27. 27.
    Latini, F. R., Hemerly, J. P., Oler, G., Riggins, G. J. & Cerutti, J. M. Re-expression of ABI3-binding protein suppresses thyroid tumor growth by promoting senescence and inhibiting invasion. Endocr Relat Cancer 15, 787–799 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Okamura, K. et al. Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer 78, 100–106 (2012).CrossRefPubMedGoogle Scholar
  29. 29.
    Okroj, M., Hsu, Y. F., Ajona, D., Pio, R. & Blom, A. M. Non-small cell lung cancer cells produce a functional set of complement factor I and its soluble cofactors. Mol Immunol 45, 169–179 (2008).CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka, Y., Amos, K. D., Joo, H. G., Eberlein, T. J. & Goedegebuure, P. S. Modification of the HER2/NEU-derived tumor antigen GP2 improves induction of GP2-reactive cytotoxic T lymphocytes. Int J Cancer 94, 540–544 (2001).CrossRefPubMedGoogle Scholar
  31. 31.
    Bermudez, O., Hennen, E., Koch, I., Lindner, M. & Eickelberg, O. Gli1 mediates lung cancer cell proliferation and Sonic Hedgehog-dependent mesenchymal cell activation. PLoS One 8, e63226 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Park, J. Y. et al. Gene silencing of SLC5A8 identified by genome-wide methylation profiling in lung cancer. Lung Cancer 79, 198–204 (2013).CrossRefPubMedGoogle Scholar
  33. 33.
    Wu, X. et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis 24, 505–509 (2003).CrossRefPubMedGoogle Scholar
  34. 34.
    Chan, B. A. & Hughes, B. G. Targeted therapy for nonsmall cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 4, 36–54 (2015).PubMedPubMedCentralGoogle Scholar
  35. 35.
    Choi, J. H. Molecular Biology of Non-small-cell Lung Cancer. Hanyang Medical Reviews 34, 4–9 (2014).CrossRefGoogle Scholar
  36. 36.
    Murphy, G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8, 929–941 (2008).CrossRefPubMedGoogle Scholar
  37. 37.
    Dijkstra, A. et al. Expression of ADAMs (“a disintegrin and metalloprotease”) in the human lung. Virchows Arch 454, 441–449 (2009).CrossRefPubMedGoogle Scholar
  38. 38.
    Davies, E. R. et al. Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight 1 (2016).Google Scholar
  39. 39.
    Umland, S. P. et al. Mouse ADAM33, two splice variants differ in protein maturation and localization. Am J Respir Cell Mol Biol 30, 530–539 (2004).CrossRefPubMedGoogle Scholar
  40. 40.
    Jackson, H. W., Defamie, V., Waterhouse, P. & Khokha, R. TIMPs: versatile extracellular regulators in cancer. Nat Rev Cancer 17, 38–53 (2017).CrossRefPubMedGoogle Scholar
  41. 41.
    Seniski, G. G. et al. ADAM33 gene silencing by promoter hypermethylation as a molecular marker in breast invasive lobular carcinoma. BMC Cancer 9, 80 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mochizuki, S. & Okada, Y. ADAMs in cancer cell proliferation and progression. Cancer Sci 98, 621–628 (2007).CrossRefPubMedGoogle Scholar
  43. 43.
    Manica, G. C. et al. Down regulation of ADAM33 as a Predictive Biomarker of Aggressive Breast Cancer. Sci Rep 7, 44414 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tripathi, P., Awasthi, S. & Gao, P. ADAM metallopeptidase domain 33 (ADAM33): a promising target for asthma. Mediators Inflamm 2014, 572025 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Taniguchi, K. et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 17, 7808–7815 (2011).CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang, B. O. et al. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation. Exp Ther Med 9, 1383–1388 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Li, J. et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 14, 579–584 (2008).CrossRefPubMedGoogle Scholar
  48. 48.
    Nagai, Y. et al. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res 65, 7276–7282 (2005).CrossRefPubMedGoogle Scholar
  49. 49.
    Wang, H. et al. Allele-specific, non-extendable primer blocker PCR (AS-NEPB-PCR) for DNA mutation detection in cancer. J Mol Diagn 15, 62–69 (2013).CrossRefPubMedGoogle Scholar
  50. 50.
    Xie, F. et al. Sensitive detection of trace amounts of KRAS codon 12 mutations by a fast and novel one-step technique. Clin Biochem 47, 237–242 (2014).CrossRefPubMedGoogle Scholar
  51. 51.
    Narayan, A. et al. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res 72, 3492–3498 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pecuchet, N. et al. Analysis of Base-Position Error Rate of Next-Generation Sequencing to Detect Tumor Mutations in Circulating DNA. Clin Chem 62, 1492–1503 (2016).CrossRefPubMedGoogle Scholar
  53. 53.
    Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4, 136ra168 (2012).CrossRefGoogle Scholar
  54. 54.
    Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20, 548–554 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lv, W. et al. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART). Clin Chem 61, 172–181 (2015).CrossRefPubMedGoogle Scholar
  56. 56.
    Chai, X. et al. A comparative study of EGFR oncogenic mutations in matching tissue and plasma samples from patients with advanced non-small cell lung carcinoma. Clin Chim Acta 457, 106–111 (2016).CrossRefPubMedGoogle Scholar
  57. 57.
    Lanman, R. B. et al. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. PLoS One 10, e0140712 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Paweletz, C. P. et al. Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients. Clin Cancer Res 22, 915–922 (2016).CrossRefPubMedGoogle Scholar
  59. 59.
    Wee, E. J., Wang, Y., Tsao, S. C. & Trau, M. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags. Theranostics 6, 1506–1513 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mosko, M. J. et al. Ultrasensitive Detection of Multiplexed Somatic Mutations Using MALDI-TOF Mass Spectrometry. J Mol Diagn 18, 23–31 (2016).CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemicals Research Bureau, Occupational Safety and Health Research InstituteKorea Occupational Safety and Health AgencyDaejeonRepublic of Korea
  2. 2.Department of Biology, College of Bioscience and BiotechnologyChungnam National UniversityDaejeonRepublic of Korea

Personalised recommendations