Molecular & Cellular Toxicology

, Volume 14, Issue 2, pp 211–220 | Cite as

Igongsan reduces testosterone-induced benign prostate hyperplasia by regulating 5α-reductase in rats

  • JongWook Kang
  • Geun Hyuk Lee
  • Yunu Jung
  • Dong Hyun Youn
  • Seona Lim
  • Jinbong Park
  • Jae Young Um
Original Paper
  • 23 Downloads

Abstract

Backgrounds

Igongsan (IGS) is a traditional Korean herbal medication composed of five different herbs; Citri Unshius Pericarpium, Poria Sclerotium, Glycyrrhizae Radix et Rhizoma, Atractylodis Rhizoma Alba, and Ginseng Radix. In this study, we evaluated the effect of IGS on benign prostatic hyperplasia (BPH), a disease resulting from a noncancerous size increase of the prostate which is common in aging men.

Methods

We induced BPH by a 4-week daily injection of testosterone propionate and investigated the effects IGS on BPH. After pre-treatment, the rats were divided into four groups and treated by each drugs for 4 weeks. Histological alteration was observed by hematoxylin and eosin (H&E) staining. Type-2 5α-reductase (5AR-2), androgen receptor (AR), estrogen receptor-α (ERα) and prostate specific antigen (PSA) were confirmed by western blot analysis and immunohistochemistry staining.

Results

IGS reduced the enlarged prostate and prostatic index, while the epithelium thickness and enlarged lumen area returned to their normal state in BPH-induced rats. In particular, 5AR-2, which is a major target for BPH medication, was inhibited by IGS. IGS also regulated the factors including AR and ERα to interact with 5AR-2. Consequently, PSA, a major diagnostic marker for BPH, was suppressed by IGS treatment.

Conclusion

Based on our findings, this study shows that IG S can alleviate BPH by regulating 5AR, suggesting its potential as a new, effective medication for BPH treatment.

Keywords

Benign prostate hyperplasia Igongsan Type-2 5α-reductase Androgen receptor Estrogen receptor α Prostate specific antigen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carson, C. & Rittmaster, R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology 61, 2–7 (2003).CrossRefPubMedGoogle Scholar
  2. 2.
    Lesovaya, E. A. et al. Rapatar, a nanoformulation of rapamycin, decreases chemically-induced benign prostate hyperplasia in rats. Oncotarget 6, 9718–9727 (2015).PubMedPubMedCentralGoogle Scholar
  3. 3.
    Barkin, J. Benign prostatic hyperplasia and lower urinary tract symptoms: evidence and approaches for best case management. Can J Urol 18, 14 (2011).PubMedGoogle Scholar
  4. 4.
    Park, H. K. & Kim, S. K. Promoter polymorphisms of NDUFA4 gene were associated with prostate enlargement of benign prostatic hyperplasia. Mol Cell Toxicol 11, 401–406 (2015).CrossRefGoogle Scholar
  5. 5.
    Steers, W. D. 5α-Reductase activity in the prostate. Urology 58, 17–24 (2001).CrossRefPubMedGoogle Scholar
  6. 6.
    Reyes, E. M., Camacho-Arroyo, I., Nava, G. & Cerbon, M. A. Differential Methylation in Steroid 5α-Reductase Isozyme Genes in Epidydimis, Testis, and Liver of the Adult Rat. J Androl 18, 372–377 (1997).PubMedGoogle Scholar
  7. 7.
    Pelekanou, V., Notas, G., Stathopoulos, E. N., Castanas, E. & Kampa, M. Androgen receptors in early and castration resistant prostate cancer: friend or foe. Hormones (Athens) 12, 224–235 (2013).CrossRefGoogle Scholar
  8. 8.
    Roehrborn, C. Pathology of benign prostatic hyperplasia. Int J Impotence Res 20, S11–S18 (2008).CrossRefGoogle Scholar
  9. 9.
    Karazanashvili, G. Editorial comment on: the relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur Urol 54, 1383–1384 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    Velonas, V. M., Woo, H. H., Remedios, C. G. d. & Assinder, S. J. Current status of biomarkers for prostate cancer. Int J Mol Sci 14, 11034–11060 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McPherson, S. J., Ellem, S. J. & Risbridger, G. P. Estrogen-regulated development and differentiation of the prostate. Differentiation 76, 660–670 (2008).CrossRefPubMedGoogle Scholar
  12. 12.
    Prins, G. S. & Korach, K. S. The role of estrogens and estrogen receptors in normal prostate growth and disease. Steroids 73, 233–244 (2008).CrossRefPubMedGoogle Scholar
  13. 13.
    Tsurusaki, T. et al. Zone-dependent expression of estrogen receptors α and β in human benign prostatic hyperplasia. J Clin Endocrinol Metab 88, 1333–1340 (2003).CrossRefPubMedGoogle Scholar
  14. 14.
    Gilbert Jr, T. D., Davis, E. A. & Ollendorf, D. A. An examination of treatment patterns and costs of care among patients with benign prostatic hyperplasia. Am J Manag Care 12, S99–S110 (2006).PubMedGoogle Scholar
  15. 15.
    Roehrborn, C. G. & Rosen, R. C. Medical therapy options for aging men with benign prostatic hyperplasia: focus on alfuzosin 10 mg once daily. Clin Interv Aging 2008, 511 (2008).CrossRefGoogle Scholar
  16. 16.
    Traish, A. M., Hassani, J., Guay, A. T., Zitzmann, M. & Hansen, M. L. Adverse side effects of 5α-reductase inhibitors therapy: Persistent diminished libido and erectile dysfunction and depression in a subset of patients. J Sex Med 8, 872–884 (2011).CrossRefPubMedGoogle Scholar
  17. 17.
    Bullock, T. L. & Andriole Jr, G. L. Emerging drug therapies for benign prostatic hyperplasia. Expert Opin Emerg Drugs 11, 111–123 (2006).CrossRefPubMedGoogle Scholar
  18. 18.
    Gravas, S. & Oelke, M. Current status of 5α-reductase inhibitors in the management of lower urinary tract symptoms and BPH. World J Urol 28, 9–15 (2010).CrossRefPubMedGoogle Scholar
  19. 19.
    McConnell, J. D. et al. The effect of finasteride on the risk of acute urinary retention and the need for surgical treatment among men with benign prostatic hyperplasia. N Engl J Med 338, 557–563 (1998).CrossRefPubMedGoogle Scholar
  20. 20.
    Kim, S. et al. The Antiinflammatory Mechanism of Igongsan in Mouse Peritoneal Macrophages via Suppression of NF-κB/Caspase-1 Activation. Phytother Res 28, 736–744 (2014).CrossRefPubMedGoogle Scholar
  21. 21.
    Kim, S. et al. Beneficial effects of the traditional medicine Igongsan and its constituent ergosterol on dextran sulfate sodium-induced colitis in mice. Mol Med Rep 12, 3549–3556 (2015).CrossRefPubMedGoogle Scholar
  22. 22.
    Rho, Y., Ahn, K., Chang, S., Jung, J. & Lee, K. Preventive Effect of Crude Drug Preparation (E-kong-san) on Cisplatin induced Nephrotoxicity. Korean J Pharmacogn 29, 258–264 (1998)Google Scholar
  23. 23.
    Lee, K. et al. Cytoprotective and Antioxidative Effects of Crude Drug Preparation (E-kong-san). Korean J Pharmacogn 30, 255–260 (1999)Google Scholar
  24. 24.
    Gene, M. E. et al. Anti-metastatic and Anti-angiogenic Activities of Ekong-san and Its Metabolites by Human Intestinal Bacteria. J Physiol & Pathol Korean Med 18, 1686–1693 (2004)Google Scholar
  25. 25.
    Park, S., Kim, K., Jung, H., Choi, W. & Yoon, S. The Study on the Process and Quality Control of Rhus Verniciflua Stokes Extract (Nexia). J of Kor Orilental Oncol 11, 31–39 (2006)Google Scholar
  26. 26.
    Ozer, K., Horsanali, M. O., Gorgel, S. N., Horsanali, B. O. & Ozbek, E. Association between Benign Prostatic Hyperplasia and Neutrophil-Lymphocyte Ratio, an Indicator of Inflammation and Metabolic Syndrome. Urol Int doi:10.1159/000448289 (2016).Google Scholar
  27. 27.
    Nickel, J. C. Inflammation and benign prostatic hyperplasia. Urol Clin North Am 35, 109–115 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fong, Y. K., Milani, S. & Djavan, B. Natural history and clinical predictors of clinical progression in benign prostatic hyperplasia. Curr Opin Urol 15, 35–38 (2005).CrossRefPubMedGoogle Scholar
  29. 29.
    Blankstein, U., Van Asseldonk, B. & Elterman, D. S. BPH update: medical versus interventional management. Can J Urol 23, 10–15 (2016).PubMedGoogle Scholar
  30. 30.
    Nevéus, T. et al. The standardization of terminology of lower urinary tract function in children and adolescents: report from the Standardisation Committee of the International Children’s Continence Society. J Urol 176, 314–324 (2006).CrossRefPubMedGoogle Scholar
  31. 31.
    Kim, B. H., Sohn, J. C., Park, C. H. & Kim, C. I. The usefulness of intravesical prostatic protrusion and bladder wall thickness measurement using transabdominal ultrasound in patients with benign prostatic hyperplasia. Korean J Urol 46, 1180–1185 (2005).Google Scholar
  32. 32.
    Boyle, P., Gould, A. L. & Roehrborn, C. G. Prostate volume predicts outcome of treatment of benign prostatic hyperplasia with finasteride: meta-analysis of randomized clinical trials. Urology 48, 398–405 (1996).CrossRefPubMedGoogle Scholar
  33. 33.
    Lepor, H. Alpha-blockers for the Treatment of Benign Prostatic Hyperplasia. Urol Clin North Am 43, 311–323 (2016).CrossRefPubMedGoogle Scholar
  34. 34.
    Giuliano, F. Impact of medical treatments for benign prostatic hyperplasia on sexual function. BJU Int 97, 34–38 (2006).CrossRefPubMedGoogle Scholar
  35. 35.
    Fagelman, E. & Lowe, F. C. Herbal medications in the treatment of benign prostatic hyperplasia (BPH). Urol Clin North Am 29, 23–29 (2002).CrossRefPubMedGoogle Scholar
  36. 36.
    Kato, T. et al. Basic studies on the prostate of rat under various hormonal environment. Endocrinol Jpn 12, 1–8 (1965).CrossRefPubMedGoogle Scholar
  37. 37.
    McNeal, J. E. Normal and pathologic anatomy of prostate. Urology 17, 11–16 (1981).PubMedGoogle Scholar
  38. 38.
    Gandaglia, G. et al. The role of prostatic inflammation in the development and progression of benign and malignant diseases. Curr Opin Urol doi:10.1159/000448289 (2016).Google Scholar
  39. 39.
    Choi, H. M. et al. Cinnamomi Cortex (Cinnamomum verum) Suppresses Testosterone-induced Benign Prostatic Hyperplasia by Regulating 5alpha-reductase. Sci Rep 6, 31906 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hong, E. et al. Eucommia ulmoides extract stimulates glucose uptake through PI 3-kinase mediated pathway in L6 rat skeletal muscle cells. Mol Cell Toxicol 4, 224–229 (2008).Google Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • JongWook Kang
    • 1
  • Geun Hyuk Lee
    • 2
  • Yunu Jung
    • 1
  • Dong Hyun Youn
    • 1
  • Seona Lim
    • 2
  • Jinbong Park
    • 1
    • 2
  • Jae Young Um
    • 1
    • 2
  1. 1.Department of Science in Korean Medicine, Graduate SchoolKyung Hee UniversitySeoulRepublic of Korea
  2. 2.Department of Pharmacology, College of Korean Medicine and Basic Research Laboratory for Comorbidity RegulationKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations