Skip to main content
Log in

Perfluorooctane sulfonate exacerbates mast cell-mediated allergic inflammation by the release of histamine

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

Mast cells play a major role in allergic inflammation by the release of histamine, an important mediator of type I hypersensitivity. Cencerns regarding potential harmful effects of perfluorooctane sulfonate (PFOS) have been raised. Previous studies reported that PFOS causes various adverse effects such as immunotoxicity and neurotoxicity. This report studied whether PFOS affects mast cells-mediated allergic inflammation.

Methods

Ovalbumin-induced active systemic anaphylaxis model was used to assess for the type I hypersensitivity. After sensitization, mice were orally administered with PFOS and then allergic symptoms such as hypothermia and increase of serum allergic mediator were measured. In additional, this study investigated whether PFOS deteriorate allergic inflammation in immunoglobulin E-stimulated mast cells.

Results

PFOS aggravated the allergic symptoms such as hypothermia, and increase of serum histamine, tumor necrosis factor-α and immunoglobulin (Ig) E/ G1. PFOS increased the release of histamine and β-hexosaminidase through the up-regulation of intracellular calcium in IgE-stimulated mast cells. PFOS also enhanced the gene expression of pro-inflammatory cytokines by activating nuclear factor-κB.

Conclusion

This study demonstrated that PFOS more intensifies the mast cell-mediated allergic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Genuis, S. J., Beesoon, S. & Birkholz, D. Biomonitoring and elimination of perfluorinated compounds and polychlorinated biphenyls through perspiration: blood, urine, and sweat study. ISRN Toxicol 2013, 483832 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Tian, H., Gao, J., Li, H., Boyd, S. A. & Gu, C. Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite. Sci Rep 6, 32949 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Olsen, G. W. et al. Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 115, 1298–1305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harada, K. H. & Koizumi, A. Environmental and biological monitoring of persistent fluorinated compounds in Japan and their toxicities. Environ Health Prev Med 14, 7–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Granum, B. et al. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J Immunotoxicol 10, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Austin, M. E. et al. Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect 111, 1485–1489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Florentin, A., Deblonde, T., Diguio, N., Hautemaniere, A. & Hartemann, P. Impacts of two perfluorinated compounds (PFOS and PFOA) on human hepatoma cells: cytotoxicity but no genotoxicity? Int J Hyg Environ Health 214, 493–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Hainsworth, T. Raising awareness of the rise in allergy-related conditions. Nurs Times 99, 22–23 (2003).

    PubMed  Google Scholar 

  9. Amin, K. The role of mast cells in allergic inflammation. Respir Med 106, 9–14 (2012).

    Article  PubMed  Google Scholar 

  10. Castle, J. D., Guo, Z. & Liu, L. Function of the t-SNARE SNAP-23 and secretory carrier membrane proteins (SCAMPs) in exocytosis in mast cells. Mol Immunol 38, 1337–1340 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Gwack, Y., Feske, S., Srikanth, S., Hogan, P. G. & Rao, A. Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 42, 145–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Boyce, J. A. Mast cells: beyond IgE. J Allergy Clin Immunol 111, 24–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Rivera, J. & Gilfillan, A. M. Molecular regulation of mast cell activation. J Allergy Clin Immunol 117, 1214–1225 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Singh, T. S., Lee, S., Kim, H. H., Choi, J. K. & Kim, S. H. Perfluorooctanoic acid induces mast cell-mediated allergic inflammation by the release of histamine and inflammatory mediators. Toxicol Lett 210, 64–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Yamaki, K. & Yoshino, S. Enhancement of Fcepsilon-RI-mediated degranulation response in the rat basophilic leukemia cell line RBL-2H3 by the fluorosurfactants perfluorooctanoic acid and perfluorooctane sulfonate. Environ Toxicol Pharmacol 29, 183–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Je, I. G. et al. Tyrosol suppresses allergic inflammation by inhibiting the activation of phosphoinositide 3-kinase in mast cells. PLoS One 10, e0129829 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Je, I. G. et al. SG-HQ2 inhibits mast cell-mediated allergic inflammation through suppression of histamine release and pro-inflammatory cytokines. Exp Biol Med (Maywood) 240, 631–638 (2015).

    Article  CAS  Google Scholar 

  18. Bae, Y., Lee, S. & Kim, S. H. Chrysin suppresses mast cell-mediated allergic inflammation: involvement of calcium, caspase-1 and nuclear factor-kappaB. Toxicol Appl Pharmacol 254, 56–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Yoon, S. Y. et al. 1-palmitoyl-2-linoleoyl-3-acetyl-racglycerol (EC-18) modulates Th2 immunity through attenuation of IL-4 expression. Immune Netw 15, 100–109 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Finkelman, F. D., Rothenberg, M. E., Brandt, E. B., Morris, S. C. & Strait, R. T. Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J Allergy Clin Immunol 115, 449–457 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat Med 18, 693–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tak, P. P. & Firestein, G. S. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107, 7–11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Post, G. B., Cohn, P. D. & Cooper, K. R. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res 116, 93–117 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Loccisano, A. E., Longnecker, M. P., Campbell, J. L., Jr., Andersen, M. E. & Clewell, H. J., 3rd. Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life stages. J Toxicol Environ Health A 76, 25–57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tonnelier, A., Coecke, S. & Zaldivar, J. M. Screening of chemicals for human bioaccumulative potential with a physiologically based toxicokinetic model. Arch Toxicol 86, 393–403 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kannan, K. et al. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch Environ Contam Toxicol 48, 559–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. D’Hollander, W., de Voogt, P., De Coen, W. & Bervoets, L. Perfluorinated substances in human food and other sources of human exposure. Rev Environ Contam Toxicol 208, 179–215 (2010).

    PubMed  Google Scholar 

  28. Fromme, H., Tittlemier, S. A., Volkel, W., Wilhelm, M. & Twardella, D. Perfluorinated compounds-exposure assessment for the general population in Western countries. Int J Hyg Environ Health 212, 239–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Trudel, D. et al. Estimating consumer exposure to PFOS and PFOA. Risk Anal 28, 251–269 (2008).

    Article  PubMed  Google Scholar 

  30. Kudo, N. & Kawashima, Y. Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J Toxicol Sci 28, 49–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Qazi, M. R. et al. The atrophy and changes in the cellular compositions of the thymus and spleen observed in mice subjected to short-term exposure to perfluorooctanesulfonate are high-dose phenomena mediated in part by peroxisome proliferator-activated receptor-alpha. Toxicology 260, 68–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. EFSA. Opinion of the scientific panel on contaminants in the food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. The EFSA Journal 653, 1–131 (2008).

    Google Scholar 

  33. ATSDR. in Atlanta: U.S. Department of Health and Human Services (2015).

    Google Scholar 

  34. Haug, L. S., Huber, S., Becher, G. & Thomsen, C. Characterisation of human exposure pathways to perfluorinated compounds-comparing exposure estimates with biomarkers of exposure. Environ Int 37, 687–693 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kennedy, G. L., Jr. et al. The toxicology of perfluorooctanoate. Crit Rev Toxicol 34, 351–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Sampson, H. A. et al. Second symposium on the definition and management of anaphylaxis: summary report-second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. Ann Emerg Med 47, 373–380 (2006).

    Article  PubMed  Google Scholar 

  37. He, S. H., Zhang, H. Y., Zeng, X. N., Chen, D. & Yang, P. C. Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis. Acta Pharmacol Sin 34, 1270–1283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wex, E., Thaler, E., Blum, S. & Lamb, D. A novel model of IgE-mediated passive pulmonary anaphylaxis in rats. PLoS One 9, e116166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Osterfeld, H. et al. Differential roles for the IL-9/IL-9 receptor alpha-chain pathway in systemic and oral antigen-induced anaphylaxis. J Allergy Clin Immunol 125, 469–476 e462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahrens, R. et al. Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice. Am J Pathol 180, 1535–1546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishikawa, R. et al. IgG-mediated systemic anaphylaxis to protein antigen can be induced even under conditions of limited amounts of antibody and antigen. Biochem Biophys Res Commun 402, 742–746 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Devey, L., Festing, M. F. & Wigmore, S. J. Effect of temperature control upon a mouse model of partial hepatic ischaemia/reperfusion injury. Lab Anim 42, 12–18 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Laidlaw, T. M. et al. Characterization of a novel human mast cell line that responds to stem cell factor and expresses functional FcepsilonRI. J Allergy Clin Immunol 127, 815–822 e811-815 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishida, K. et al. Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J Cell Biol 170, 115–126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki, Y. et al. Fc epsilon RI signaling of mast cells activates intracellular production of hydrogen peroxide: role in the regulation of calcium signals. J Immunol 171, 6119–6127 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Woolley, D. E. & Tetlow, L. C. Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Res 2, 65–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. DeWitt, J. C., Peden-Adams, M. M., Keller, J. M. & Germolec, D. R. Immunotoxicity of perfluorinated compounds: recent developments. Toxicol Pathol 40, 300–311 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongwoo Khang or Sang-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JK., Lee, S., Choi, YA. et al. Perfluorooctane sulfonate exacerbates mast cell-mediated allergic inflammation by the release of histamine. Mol. Cell. Toxicol. 14, 173–181 (2018). https://doi.org/10.1007/s13273-018-0019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0019-z

Keywords

Navigation