Molecular & Cellular Toxicology

, Volume 14, Issue 2, pp 113–122 | Cite as

Exosomes as diagnostic biomarkers in cancer

  • Jung-Hee Kim
  • Eunjoo Kim
  • Mi Young Lee
Review Paper


Purpose of review

Exosomes are extracellular vesicles of 30-150 nm diameter, secreted from nearly all mammalian cells through fusion of multivesicular bodies with the plasma membrane. Owing to the differences in the properties of exosomes and microvesicles released through outward budding of the plasma membrane, exosomes have recently received increasing interest. This review discusses the current status of exosome research for diagnostic biomarkers in cancers. The scope of information that can be acquired from exosomal contents potentially include tumour progression, detection of metastasis, and possible chemotherapeutic resistance, which can facilitate clinical decisions in precision medicine.

Recent findings

Exosomes protect molecular components including miRNAs and proteins from enzymatic degradation during circulation and serve as stable cargo for them. miRNAs transferred by exosomes have emerged as novel regulators of cellular function in various types of cancers. In addition, exosomes contain numerous plasma membrane and cytosolic proteins and exosome- specific proteins. However, many of the experiments are limited in their methods for the isolation and purification of exosomes. Nevertheless, the physiological and pathological significance of the role of exosomes in miRNA- or protein-based cell-to-cell or tissue-to-tissue communication has been highlighted.


Exosome Biomarker miRNA Protein Cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Munson, P. & Shukla, A. Exosomes: potential in cancer diagnosis and therapy. Medicines (Basel) 2, 310–327 (2015).CrossRefGoogle Scholar
  2. 2.
    Lin, J. et al. Exosomes: novel biomarkers for clinical diagnosis. Sci World J 2015, 657086 (2015).Google Scholar
  3. 3.
    Soung, Y. W., Ford, S., Zhang, V. & Chung, J. Exosomes in cancer diagnostics. Cancers 9, 8 (2017).CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Seigneuric, R., Cordonnier, M., Gobbo, J., Marcion, G. & Garrido, C. Tumor exosomes: potential biomarkers and targets in cancer. J Clin Cell Immunol 7, 6 (2016).Google Scholar
  5. 5.
    Properzi, F., Logozzi, M. & Fais, S. Exosomes: the future of biomarkers in medicine. Biomark Med 7, 769–778 (2013).CrossRefPubMedGoogle Scholar
  6. 6.
    Street, J. M. et al. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J Physiol 589, 6119–6127 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pitt, J. M. et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 126, 1224–1232 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tauro, B. J. et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293–304 (2012).CrossRefPubMedGoogle Scholar
  9. 9.
    Li, P., Kaslan, M., Lee, S. H., Yao, J. & Gao, Z. Progress in exosome isolation techniques. Theranostics 7, 789–804 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Iwai, K., Minamisawa, T., Suga, K., Yajima, Y. & Shiba, K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 5, 30829 (2016).CrossRefPubMedGoogle Scholar
  11. 11.
    Szatanek, R., Baran, J., Siedlar, M. & Baj-Krzyworzeka, M. Isolation of extracellular vesicles: Determining the correct approach. Int J Mol Med 36, 11–17 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nordin, J. Z. et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 11, 879–883 (2015).CrossRefPubMedGoogle Scholar
  13. 13.
    Thind, A. & Wilson, C. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J Extracell Vesicles 5, 31292 (2016).CrossRefPubMedGoogle Scholar
  14. 14.
    Brinton, L. T., Sloane, H. S., Kester, M. & Kelly, K. A. Formation and role of exosomes in cancer. Cell Mol Life Sci 72, 659–671 (2015).CrossRefPubMedGoogle Scholar
  15. 15.
    Li, X. & Wang, X. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol Cancer 16, 92 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Milane, L., Singh, A., Mattheolabakis, G., Suresh M & Amiji, M. M. Exosome mediated communication within the tumor microenvironment. J Control Release 219, 278–294 (2015).CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis out growth. Nature 527, 100–104 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Challagundla, K. B. et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 107, djv135 (2015).Google Scholar
  19. 19.
    Ge, Q. et al. miRNA in plasma exosome is stable under different storage conditions. Molecules 19, 1568–1575 (2014).CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao, L. et al. Isolation and identification of miRNAs in exosomes derived from serum of colon cancer patients. J Cancer 8, 1145–1152 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li, J. et al. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int J Oncol 49, 838–846 (2016).CrossRefPubMedGoogle Scholar
  22. 22.
    Santos, J. C., Ribeiro, M. L., Sarian, L. O., Ortega, M. M. & Derchain, S. F. Exosomes-mediate microRNAs transfer in breast cancer chemoresistance regulation. Am J Cancer Res 6, 2129–2139 (2016).PubMedPubMedCentralGoogle Scholar
  23. 23.
    Falcone, G., Felsani, A. & D’Agnano, I. Signaling by exosomal microRNAs in cancer. J Exp Clinic Cancer Res 34, 32 (2015).CrossRefGoogle Scholar
  24. 24.
    Schillaci, O. et al. Exosomes from metastatic cancer cells transfer amoeboid phenotype to non-metastatic cells and increase endothelial permeability: their emerging role in tumor heterogeneity. Sci Rep 7, 4711 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Matsumura, T. et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer 113, 275–281 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ogata-Kawata, H. et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS ONE 9, e92921 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Teng, Y. et al. MVP mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 8, 14448 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bigagli, E., Luceri, C., Guasti, D. & Cinci, L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: role of microRNA-210. Cancer Biol Ther 17, 1062–1069 (2016).CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Camacho, L., Guerrero, P. & Marchetti, D. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes. PLoS One 8, e73790 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ye, S. B. et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5, 5439–5452 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schmidt, B., Rehbein, G. & Fleischhacker, M. Liquid profiling in lung cancer -quantification of extracellular miRNAs in bronchial lavage. Adv Exp Med Biol 924, 33–37 (2016).CrossRefPubMedGoogle Scholar
  32. 32.
    Dejima, H., Iinuma, H., Kanaoka, R., Matsutani, N. & Kawamura, M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol Lett 13, 1256–1263 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Warnecke-Eberz, U., Chon, S. H., Hölscher, A. H., Drebber, U. & Bollschweiler, E. Exosomal onco-miRs from serum of patients with adenocarcinoma of the esophagus: comparison of miRNA profiles of exosomes and matching tumor. Tumour Biol 36, 4643–4653 (2015).CrossRefPubMedGoogle Scholar
  34. 34.
    Alhasan, A. H. et al. Circulating microRNA signature for the diagnosis of very high-risk prostate cancer. Proc Natl Acad Sci USA 113, 10655–10660 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Taylor, D. D. & Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110, 13–21 (2008).CrossRefPubMedGoogle Scholar
  36. 36.
    Uratani, R. et al. Diagnostic potential of cell-free and exosomal microRNAs in the identification of patients with high-risk colorectal adenomas. PLoS ONE 11, e0160722 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shi, J. Considering exosomal miR-21 as a biomarker for cancer. J Clinic Med 5, 42 (2016).CrossRefGoogle Scholar
  38. 38.
    Tanaka, Y. et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119, 1159–1167 (2013).CrossRefPubMedGoogle Scholar
  39. 39.
    Zhou, X. et al. Prognostic value of miR-21 in various cancers: an updating meta-analysis. PLoS One 9, e102413 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fu, F., Jiang, W., Zhou, L. & Chen, Z. Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Transl Oncol 11, 221–232 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li, A. et al. Exosomal proteins as potential markers of tumor diagnosis. J Hematol Oncol 10, 175 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sharma, S. et al. Tumor-derived exosomes in ovarian cancer -liquid biopsies for early detection and realtime monitoring of cancer progression. Oncotarget 8, 104687–104703 (2017).PubMedPubMedCentralGoogle Scholar
  43. 43.
    Khan, S. et al. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS ONE 7, e46737 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Smalley, D. M., Sheman, N. E., Nelson, K. & Theodorescu, D. Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res 7, 2088–2096 (2008).CrossRefPubMedGoogle Scholar
  45. 45.
    Rupp, A. K. et al. Loss of EpCAM expression in breast cancer derived serum exosomes: Role of proteolytic cleavage. Gynecol Oncol 122, 437–446 (2011).CrossRefPubMedGoogle Scholar
  46. 46.
    Sandfeld-Paulsen, B. et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Ontol 10, 1595–1602 (2016).Google Scholar
  47. 47.
    Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a prometastatic phenotype through MET. Nat Med 18, 883–891 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Izquierdo-Useros, N., Puertas, M. C., Borràs, F. E., Blanco, J. & Martinez-Picado, J. Exosomes and retroviruses: the chicken or the egg? Cell Microbiol 13, 10–17 (2011).CrossRefPubMedGoogle Scholar
  50. 50.
    Li, W. et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer 16, 145 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chen, C. L. et al. Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J Proteome Res 11, 5611–5629 (2012).CrossRefPubMedGoogle Scholar
  52. 52.
    Moon, P. G. et al. Identification of developmental endothelial locus-1 on circulating extracellular vesicles as a novel biomarker for early breast cancer detection. Clin Cancer Res 22, 1757–1766 (2016).CrossRefPubMedGoogle Scholar
  53. 53.
    Moon, P. G. et al. Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget 7, 40189–40199 (2016).PubMedPubMedCentralGoogle Scholar
  54. 54.
    Khan, S. et al. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer 14, 176 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen, I. H. et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci U S A 114, 3175–3180 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fang, S. et al. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS One 12, e0175050 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Toth, B. et al. Circulating microparticles in breast cancer patients: a comparative analysis with established biomarkers. Anticancer Res 28, 1107–1112 (2008).PubMedGoogle Scholar
  58. 58.
    Arbelaiz, A. et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 66, 1125–1143 (2017).CrossRefPubMedGoogle Scholar
  59. 59.
    Yoshioka, Y. et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun 5, 3591 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Li, J. et al. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med 21, 838–847 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yokoyama, S. et al. Clinical implications of carcinoembryonic antigen distribution in serum exosomal fraction -measurement by ELISA. PLoS One 12, e0183337 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10, 1470–1476 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Shao, H. et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18, 1835–1840 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sandfeld-Paulsen, B. et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol 11, 1701–1710 (2016).CrossRefPubMedGoogle Scholar
  65. 65.
    Jakobsen, K. R. et al. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 4, 26659 (2015).CrossRefPubMedGoogle Scholar
  66. 66.
    Li, Y., Zhang, Y., Qiu, F. & Qiu, Z. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 32, 1976–1983 (2011).CrossRefPubMedGoogle Scholar
  67. 67.
    Yamashita, T. et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie 68, 969–973 (2013).PubMedGoogle Scholar
  68. 68.
    Reclusa, P. et al. Exosomes as diagnostic and predictive biomarkers in lung cancer. J Thorac Dis 9(Suppl. 13), S1373–S1382 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wang, L. Z. et al. Exosomal protein FAM3C as a potential novel biomarker for non-small cell lung cancer. J Clin Oncol 32(Suppl. e22162) (2014).Google Scholar
  70. 70.
    Logozzi, M. et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS ONE 4, e5219 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Revenfeld, A. L. et al. Diagnostic and prognostic potential of extracellular vesicles in peripheral blood. Clin Ther 36, 830–846 (2014).CrossRefPubMedGoogle Scholar
  72. 72.
    Keryer-Bibens, C. et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6, 283 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Szajnik, M. et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale) Supply 4, 3 (2013).Google Scholar
  74. 74.
    Zhao, Z., Yang, Y., Zeng, Y. & He, M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16, 489–496 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Li, J. et al. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer 9, 244 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Liang, B. et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics 80, 171–182 (2013).CrossRefPubMedGoogle Scholar
  77. 77.
    Shender, V. O. et al. Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication. Mol Cell Proteomics 13, 3558–3571 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32, 488–493 (2014).CrossRefGoogle Scholar
  79. 79.
    Runz, S. et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107, 563–571 (2007).CrossRefPubMedGoogle Scholar
  80. 80.
    Carbotti, G. et al. Activated leukocyte cell adhesion molecule soluble form: a potential biomarker of epithelial ovarian cancer is increased in type II tumors. Int J Cancer 132, 2597–2605 (2013).CrossRefPubMedGoogle Scholar
  81. 81.
    Taylor, D. D., Gercel-Taylor, C. & Parker, L. P. Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer. Gynecol Oncol 115, 112–120 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yi, H. et al. Exosomes mediated pentose phosphate pathway in ovarian cancer metastasis: a proteomics analysis. Int J Clin Exp Pathol 8, 15719–15728 (2015).PubMedPubMedCentralGoogle Scholar
  83. 83.
    Gomes, J. et al. Extracellular vesicles from ovarian carcinoma cells display specific glycosignatures. Biomolecules 5, 1741–1761 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lea, J. et al. Detection of phosphatidylserine-positive exosomes as a diagnostic marker for ovarian malignancies: a proof of concept study. Oncotarget 8, 14395–14407 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Escrevente, C. et al. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells. PLoS ONE 8, e78631 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Keller, S. et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278, 73–81 (2009).CrossRefPubMedGoogle Scholar
  87. 87.
    Herreros-Villanueva, M. & Bujanda, L. Glypican-1 in exosomes as biomarker for early detection of pancreatic cancer. Ann Transl Med 4, 64 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17, 816–826 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Nilsson, J. et al. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. Br J Cancer 100, 1603–1607 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Logozzi, M. et al. Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett 403, 318–329 (2017).CrossRefPubMedGoogle Scholar
  91. 91.
    Kawakami, K. et al. Gamma-glutamyltransferase activity in exosomes as a potential marker for prostate cancer. BMC Cancer 17, 316 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Gamez-Valero, A., Lozano-Ramos, S. I., Bancu, I., Lauzurica-Valdemoros, R. & Borras, F. E. Urinary extracellular vesicles as source of biomarkers in kidney diseases. Front Immunol 6, 6 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Raimondo, F. et al. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol BioSyst 9, 1220–1233 (2013).CrossRefPubMedGoogle Scholar
  94. 94.
    Baran, J. et al. Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol Immunother 59, 841–850 (2010).CrossRefPubMedGoogle Scholar
  95. 95.
    Belov, L. et al. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles 5, 25355 (2016).CrossRefPubMedGoogle Scholar
  96. 96.
    Franzen, C. A. et al. Urinary exosomes: The potential for biomarker utility, intercellular signaling and therapeutics in urological malignancy. J Urol 195, 1331–1339 (2016).CrossRefPubMedGoogle Scholar
  97. 97.
    Suh, N., Subramanyam, D. & Lee, M. Y. Molecular signatures of secretomes from mesenchymal stem cells: therapeutic benefits. Mol Cell Toxicol 13, 133–141 (2017).CrossRefGoogle Scholar
  98. 98.
    Wang, J., Zheng, Y. & Zhao, M. Exosome-based cancer therapy: Implication for targeting cancer stem cells. Front Pharmacol 7, 533 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Zhang, Y. et al. Exosomes derived from IL-12-anchored renal cancer cells increase induction of specific antitumor response in vitro: a novel vaccine for renal cell carcinoma. Int J Oncol 36, 133–140 (2010).PubMedGoogle Scholar

Copyright information

© The Korean Society of Toxicogenomics and Toxicoproteomics and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Companion Diagnostics and Medical Technology Research GroupDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
  2. 2.Department of Medical Biotechnology, College of Medical ScienceSoonChunHyang UniversityAsan, ChungnamRepublic of Korea

Personalised recommendations