Skip to main content
Log in

Chronic cigarette smoking-induced oxidative/nitrosative stress in human erythrocytes and platelets

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Cigarette smoke contains a number of highly unstable free radicals and these free radicals enhance reactive oxygen species (ROS) and reactive nitrogen species (RNS) production leading to oxidative/nitrosative stress. Increased oxidative/nitrosative stress plays an important role in the onset of various vascular diseases. The aim of this study is to evaluate smoking-induced nitrosative and oxidative stress and the role of hypoxia inducible factor 1 alpha (HIF-1α) in erythrocytes and platelets. For this study human male volunteers aged 35±8 years were recruited and divided into two groups, namely controls and smokers (12±2 cigarettes per day for 7-10 years). Blood was collected and analyzed for various metabolites and enzymes. Results showed a decreased plasma vitamin C and reduced glutathione (GSH) with increased lipid peroxidation, carbonyl groups, iron, hemoglobin and glycated hemoglobin content in smokers. Furthermore, smokers showed higher nitrite/nitrate levels with increased eNOS protein expression in erythrocytes, in contrast, platelets showed lower nitrite/nitrate levels with decreased eNOS protein expression compared to controls. Moreover, smokers showed diminished GSH and the activities of superoxide dismutase (SOD) glutathione peroxidase (GPx) and catalase (CAT) in both erythrocytes and platelets compared to controls. Real time PCR analysis of whole blood from smokers showed increased HIF-1α and erythropoietin (EPO) gene expression compared to controls. In summary, smoking increased oxidative stress by decreasing antioxidant status in both red cells and platelets. Besides, smokers showed up-regulated HIF-1α gene expression, which inturn drives the transcription of eNOS and EPO genes under oxidative/nitrosative stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stanescu, D. Identifying smokers at risk of COPD and GOLD. Am J Respir Crit Care Med 168: 500–502 (2003).

    Article  PubMed  Google Scholar 

  2. Pasupathi. P., Bakthavathsalam, G., Rao. Y. Y. & Farook, J. Cigarette smoking-Effect of metabolic health risk: A review. Diabetes Metab Syndr 2: 1000–1008 (2009).

    Google Scholar 

  3. Pryor, W. A. & Stone, K. Oxidants in cigarette smoke, Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann NY Acad Sci 686: 12–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Valavanidis, A., Vlachogianni, T. & Fiotakis, K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health 6: 445–462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rahman, I. et al. 4-Hydroxy-2-nonenal a specific lipid peroxidation product is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166: 490–495 (2002).

    Article  PubMed  Google Scholar 

  6. Padmavathi, P., Reddy, V. D., Narendra, M. & Varadacharyulu, N. Bidis-hand-rolled, Indian cigarettes: Induced biochemical changes in plasma and red cell membranes of human male volunteers. Clin Biochem 42: 1041–1045 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Paredi, P. et al. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162: 369–373 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Semenza, G. L. Hypoxia-Inducible factors in physiology and medicine. Cell 148: 399–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor, C. T. & Moncada S: Nitric oxide, cytochrome c oxidase and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol 30: 643–647 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Ishida, T. et al. Inhibition of immunological function mediated DNA damage of alveolar macrophages caused by cigarette smoke in mice. Inhaltaxol 21: 1229–35 (2009).

    Google Scholar 

  11. Cano, M. et al. Cigarette smoking, oxidative stress, the anti-oxidant response through Nrf-2 signaling and age related macular degeneration. Vision Res 50: 652–664 (2007).

    Article  Google Scholar 

  12. Cacciola, R. R., Guarino, F. & Polosa, R. Relevance of endothelial-haemostatic dysfunction in cigarette smoking. Curr Med Chem 14: 1887–1892 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Padmavathi, P., Reddy, V. D., Kavitha, G., Paramahamsa, M. & Varadacharyulu, N. Chronic cigarette smoking alters erythrocyte alters membrane lipid composition and properties in male human volunteers. Nitric Oxide 23: 181–186 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Padmavathi, P., Reddy, V. D., Maturu, P. & Varadacharyulu, N. Smoking alterations in platelet membrane fluidity and Na(+) and K(+) ATPase activity in chronic cigarette smokers. J Atheroscler Thromb 17: 619–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Claster, S., Chiu, D. T., Quintanilha, A. & Lubin, B. Neutrophils mediate lipid peroxidation in human red cells. Blood 64: 1079–1084 (1984).

    CAS  PubMed  Google Scholar 

  16. Brown, K. M., Morrice, P. & Duthie, G. G. Erythrocyte membrane fatty acid composition of smokers and non-smokers: effects of vitamin E supplementation. Eur J Clin Nutr 52: 145–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Catala, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157: 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Cimen, M. Y. Free radical metabolism in human erythrocytes. Clin Chim Acta 390: 1–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Reznick, A. Z. et al. Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem J 286: 607–611 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davies, K. J. A. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem 262: 9895–9901 (1987).

    CAS  PubMed  Google Scholar 

  21. Yeh, C. C. et al. No effect of cigarette smoking dose on oxidized plasma proteins. Environ Res 106: 219–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Halliwell, B. How to characterize a biological antioxidant. Free Radical Res Commun 9: 1–32 (1990).

    Article  CAS  Google Scholar 

  23. Takajo, Y., Ikeda, H., Haramaki, N., Murohara, T. & Imaizumi, T. Augmented oxidative stress of platelets in chronic smokers, Mechanism of impaired platelet-derived nitric oxide bioactivity and augmented platelet aggregability. J Am Coll Cardiol 38: 1320–1327 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, H. et al. Detrimental metabolic effects of combining long-term cigarette smoke exposure and high fat diet in mice. Am J Physiol Endocrinal Metab 293: E1564–E1571 (2007).

    Article  CAS  Google Scholar 

  25. Bornemisza, P. & Suciu, I. Effect of cigarette smoking on the blood glucose levels in normal’s and diabetics. Med Intern 18: 353–356 (1980).

    CAS  Google Scholar 

  26. Bataller, R. Time to ban smoking in patients with chronic liver diseases. Hepatology 44: 1394–1396 (2004).

    Article  Google Scholar 

  27. El-Zayadi, A. R., Selim, O., Hamdy, H., El-Tawil, A. & Moustafa, H. Heavy cigarette smoking induces hypoxic polycythemia (erythrocytosis) and hyperuricemia in chronic hepatitis C patients with reversal of clinical symptoms and laboratory parameters with therapeutic phlebotomy. Am J Gastroenterol 97: 1264–1265 (2002).

    Article  PubMed  Google Scholar 

  28. Armani, C., Landini Jr. L. & Leone, A. Molecular and biochemical changes of the cardiovascular system due to smoking exposure. Curr Pharm De 15: 1038–1053 (2009).

    Article  CAS  Google Scholar 

  29. Kallio, K. et al. Tobacco smoke exposure is associated with attenuated endothelial function in 11-year old healthy children. Circulation 115: 3205–3212 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Tsuda, K., Shimamoto, Y. K., Kimura, K. & Nishio, I. Nitric oxide is a determinant of membrane fluidity of erythrocytes in postmenopausal woman: an electron paramagnetic resonance investigation. Am J Hyper 16: 244–248 (2003).

    Article  CAS  Google Scholar 

  31. Brzeszczynska, J. & Gwozdzinski, K. Nitric oxide induced oxidative changes in erythrocyte membrane component. Cell Biol Int 32: 114–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Kleinbongard, P. et al., Red blood cells express a functional endothelial nitric oxide synthase. Blood 107: 2943–2951 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ikedo, H. et al. Platelet-derived nitric oxide and coronary risk factors. Hypertension 35: 904–907 (2000).

    Article  Google Scholar 

  34. Shimasaki, Y. et al. The effects of long-term smoking on endothelial nitric oxide synthase mRNA expression in human platelets as detected with real-time quantitative RT-PCR. Clin Appl Thromb Hemost 3: 43–51 (2007).

    Article  Google Scholar 

  35. Beutler, E., Dixon, O. & Kelly, B. M. Improved method for the determination of blood glutathione. J Lab Clin Med 61: 882–890 (1963).

    CAS  PubMed  Google Scholar 

  36. Dodge, J. T., Mitchell, C. & Hanahan, D. J. The preparation and chemical characteristics of hemoglobin free ghosts of human erythrocytes. Arch Biochem Biophys 100: 119–130 (1963).

    Article  CAS  PubMed  Google Scholar 

  37. Menashi, S., Weintroub, H. & Crawfor, N. Characterization of human platelet surface and intra-cellular membranes isolated by free flow electrophoresis. J Biol Chem 256: 4095–4101 (1981).

    CAS  PubMed  Google Scholar 

  38. Trinder, P. A rapid method for the determination of sodium in serum. Analyst 76: 596–599 (1951).

    Article  CAS  Google Scholar 

  39. Ramsay, W. N. M. in Advances in Clinical Chemistry (eds Sobotka, H. & Stewart, C. P.) 1–5 (Academic Press, New York, 1955).

  40. Samuel, K. M. in Fundamentals of Clinical Chemistry (Philadelphia, PA: WB Saunders and Company 602–603, 1989).

    Google Scholar 

  41. Nathan, D. M., Singer, D. E., Hurxthal, K. & Goodson, J. D. The clinical information value of the glycosylated hemoglobin assay. New Eng J Med 310: 341–346 (1984).

    Article  CAS  PubMed  Google Scholar 

  42. Ohkawa, H. Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351–358 (1975).

    Article  Google Scholar 

  43. Reznick, A. Z. & Packer, L. Oxidative damage to proteins: Spectroscopic method for carbonyl assay. Methods Enzymol 233: 357–363 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Sastry, K. V. H., Moudgal, R. P., Mohan, J., Tyagi, J. S. & Rao, G. S. Spectrophotometric determination of serum nitrite and nitrate by Copper-Cadmium alloy. Anal Biochem 306: 79–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Roe, J. H. in Standard Methods in Clinical Chemistry Vol III (ed Seligson, D.) 35–37 (Academic Press, NewYork, 1961).

  46. Concetti, A., Massei, P., Rotilo, G., Brumori, M. & Rachmile Wiltz, E. A. Superoxide dismutase in red blood cells: method assay and enzyme content in normal subjects and in patients with thalassemia (major and intermediate). J Lab Clin Med 87: 1057–1064 (1976).

    CAS  PubMed  Google Scholar 

  47. Mishra, P. H. & Fridovich, I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutases. J Biol Chem 247: 3170–3175 (1972).

    Google Scholar 

  48. Chance, B. Catalase and peroxidases, Part II, Special methods. Methods of Biochemical Analysis 1: 408–412 (1954).

    Google Scholar 

  49. Rotruck, J. T. et al. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179: 588–590 (1973).

    Article  CAS  PubMed  Google Scholar 

  50. Reddy, V. D., Padmavathi, P., Kavitha, G., Saradamma, B. & Varadacharyulu, N. C. Alcohol-induced oxidative/nitrosative stress alters brain mitochondrial membrane properties. Mol Cell Biochem 375: 39–47 (2013).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaddi Damodara Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmavathi, P., Raghu, P.S., Reddy, V.D. et al. Chronic cigarette smoking-induced oxidative/nitrosative stress in human erythrocytes and platelets. Mol. Cell. Toxicol. 14, 27–34 (2018). https://doi.org/10.1007/s13273-018-0004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-018-0004-6

Keywords

Navigation