Complete genome sequence of Spirosoma pulveris JSH 5-14T, a bacterium isolated from a dust sample

Abstract

Dust particles from the deserts and semiarid lands in northern China cause pollution that increase the burden of allergic disease particularly in the urban population of East Asia. Dust particles that carried with windstorm are associated with microbial populations, which include virus, bacteria, and fungi. Spirosoma pulveris JSH 5-14T isolated from the gamma ray-irradiated dust sample collected at Nonsan, Chungnam province, South Korea and showed resistance against gamma and UV radiation. We carried out the whole genome sequencing to understand insight of radiation resistance and their mechanisms of survival. The whole genome of strain JSH 5-14T is comprised of 7,188,680 bp (G+C content of 50.50%) including 5,896 protein-coding genes and 52 RNA genes. The genome analysis of strain JSH 5-14T showed the presence of several genes involved in DNA repair pathways and defense mechanism against irradiation. In this study, we discuss the implication of such findings concerning other radiation resistant bacteria.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Duce, R. A., Unni, C. K., Ray, B. J., Prospero, J. M. & Merrill, J. T. Long-range atmospheric transport of soil dust from Asia to the tropical north pacific: temporal variability. Science 209:1522–1524 (1980).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Iwasaka, Y., Minoura, H. & Nagaya, K. The transport and spacial scale of Asian dust-storm clouds: a case study of the dust-storm event of April 1979. Tellus B 35, doi:10.3402/tellusb.v35i3.14594 (2011).

  3. 3.

    Lee, S., Choi, B., Yi, S. M. & Ko, G. Characterization of microbial community during Asian dust events in Korea. Sci Total Environ 407:5308–5314 (2009).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Xu, H. et al. Dust Identification over Arid and Semiarid Regions of Asia Using AIR S Thermal Infrared Channels. Advan Meteorol 2014:16 (2014).

    Google Scholar 

  5. 5.

    Jones, A. M. & Harrison, R. M. The effects of meteorological factors on atmospheric bioaerosol concentrations -a review. Sci Total Environ 326:151–180 (2004).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Jaenicke, R. Abundance of cellular material and proteins in the atmosphere. Science 308:73 (2005).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Prospero, J., Blades, E., Mathison, G. & Naidu, R. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21:1–19 (2005).

    Article  Google Scholar 

  8. 8.

    Joo, E. S. et al. Spirosoma pulveris sp. nov., a bacterium isolated from a dust sample collected at Chungnam province, South Korea. J Microbiol 53:750–755 (2015).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yang, Y. et al. Deinococcus aerius sp. nov., isolated from the high atmosphere. Int J Syst Evol Microbiol 59: 1862–1866 (2009).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Yang, Y. et al. Deinococcus aetherius sp. nov., isolated from the stratosphere. Int J Syst Evol Microbiol 60:776–779 (2010).

    Article  PubMed  Google Scholar 

  11. 11.

    Weon, H. Y. et al. Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 57:1685–1688 (2007).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Yoo, S. H. et al. Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:1191–1195 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ortiz de Orue Lucana, D., Wedderhoff, I. & Groves, M. R. ROS-Mediated Signalling in Bacteria: Zinc-Containing Cys-X-X-Cys Redox Centres and Iron-Based Oxidative Stress. J Signal Transduct 2012:605905 (2012).

    Article  PubMed  Google Scholar 

  14. 14.

    Waldeck, W. et al. RO S-mediated killing efficiency with visible light of bacteria carrying different red fluorochrome proteins. J Photochem Photobiol B 109:28–33 (2012).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Kim, M. K., Back, C. G., Jung, H. Y. & Srinivasan, S. Complete genome sequence of Spirosoma radiotolerans, a gamma-radiation-resistant bacterium isolated from rice field in South Korea. J Biotechnol 208:11–12 (2015).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kim, M. K. et al. Complete genome sequence of Hymenobacter sp. DG25B, a novel bacterium with gammaradiation resistance isolated from soil in South Korea. J Biotechnol 217:98–99 (2016).

    CAS  Google Scholar 

  17. 17.

    Earl, A. M., Rankin, S. K., Kim, K. P., Lamendola, O. N. & Battista, J. R. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Biotechnol 184:1003–1009 (2002).

    CAS  Google Scholar 

  18. 18.

    Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Petit, C. & Sancar, A. Nucleotide excision repair: from E. coli to man. Biochimie 81:15–25 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    Battista, J. R. & Cox, M. M. in Radiation Risk Estimates in Normal and Emergency Situations (eds Arrigo A. Cigna & Marco Durante) 341–359 (Springer Netherlands, 2006).

    Book  Google Scholar 

  21. 21.

    Daly, M. J. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245 (2009).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Cha, S. et al. Metagenomic Analysis of Airborne Bacterial Community and Diversity in Seoul, Korea, during December 2014, Asian Dust Event. PLoS ONE 12:e0170693 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Srinivasan, S. et al. Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil. Antonie van Leeuwenhoek 107:539–545 (2015).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Cha, S., Srinivasan, S., Seo, T. & Kim, M. K. Deinococcus soli sp. nov., a gamma-radiation-resistant bac terium isolated from rice field soil. Curr Microbiol 68: 777–783 (2014).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Srinivasan, S., Lee, J. J., Lim, S., Joe, M. & Kim, M. K. Deinococcus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 62:2844–2850 (2012).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Srinivasan, S., Kim, M. K., Lim, S., Joe, M. & Lee, M. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 62:1265–1270 (2012).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Markowitz, V. M. et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278 (2009).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Myung Kyum Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, M.K., Kim, JY., Kim, S.J. et al. Complete genome sequence of Spirosoma pulveris JSH 5-14T, a bacterium isolated from a dust sample. Mol. Cell. Toxicol. 13, 373–378 (2017). https://doi.org/10.1007/s13273-017-0041-6

Download citation

Keywords

  • Spirosoma
  • Dust radiation resistance
  • γ-Radiation