Skip to main content
Log in

Effects of triterpenoid Alisol-F on human 5-hydroxytryptamine 3A and α3β4 nicotinic acetylcholine receptor channel activity

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Alisma Rhizome is a known tradition medication, which has been used for its diuretic, hypolipidemic, anti-diabetic, and anti-inflammatory purposes for thousands of years. The primary compounds of Alisma Rhizome are protostane type triterpenes, such as Alisols A, B or C. We previously demonstrated that Alisol derivatives (Alisols A, B, and C) have inhibitory effects on 5-hydroxytryptamine 3A (5-HT3A) currents1. In this study, we tested the effects of a new triterpene, Alisol-F, on human 5-HT3A and α3β4 nicotinic acetylcholine (nACh) receptor channel currents by using Xenopus oocytes expressing these channels. Co-application of Alisol-F inhibited 5-HT3A and α3β4 nACh receptor-mediated inward peak currents. The inhibitory effect of Alisol-F on 5-HT and ACh-induced inward peak currents occurred in a reversible and concentration- dependent manner. The half maximal inhibitory concentrations (IC50) of Alisol-F were 79.4 ± 11.0 and 21.2 ±6.0 μM for the 5-HT3A and α3β4 nACh receptors, respectively. In addition, the inhibition of I 5-HT and I ACh by Alisol-F occurred noncompetitive and voltage insensitive manner. Taken together, these results show that Alisol-F may regulate 5-HT3A and α3β4 nACh receptors channel expressed in Xenopus oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, J. H. et al. Effects of protostane-type triterpenoids on the 5-HT3A receptor-mediated ion current in Xenopus oocytes. Brain Res 1331:20–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Ortells, M. O. & Lunt, G. G. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 18:121–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Solt, K., Ruesch, D., Forman, S. A., Davies, P. A. & Raines, D. E. Differential effects of serotonin and dopamine on human 5-HT3A receptor kinetics: interpretation within an allosteric kinetic model. J Neurosci 27:13151–13160 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, B. H. et al. Identification of ginsenoside interaction sites in 5-HT3A receptors. Neuropharmacology 52:1139–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Dang, H., England, P. M., Farivar, S. S., Dougherty, D. A. & Lester, H. A. Probing the role of a conserved M1 proline residue in 5-hydroxytryptamine(3) receptor gating. Mol Pharmacol 57:1114–1122 (2000).

    CAS  PubMed  Google Scholar 

  6. Lopreato, G. F., Banerjee, P. & Mihic, S. J. Amino acids in transmembrane domain two influence anesthetic enhancement of serotonin-3A receptor function. Brain Res Mol Brain Res 118:45–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, L. et al. Distinct molecular basis for differential sensitivity of the serotonin type 3A receptor to ethanol in the absence and presence of agonist. J Biol Chem 277:46256–46264 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, X. Q., Zhang, L., Stewart, R. R. & Weight, F. F. Arginine 222 in the pre-transmembrane domain 1 of 5-HT3A receptors links agonist binding to channel gating. J Biol Chem 278:46583–46589 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Keramidas, A., Moorhouse, A. J., Schofield, P. R. & Barry, P. H. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol 86:161–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lummis, S. C. The transmembrane domain of the 5-HT3 receptor: its role in selectivity and gating. Biochem Soc Trans 32:535–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, B. H. et al. Quinazolindione derivatives as potent 5-HT3A receptor antagonists. Bioorg Med Chem 17:4793–4796 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Sargent, P. B. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, J. H. et al. Effects of dextrorotatory morphinans on alpha3beta4 nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur J Pharmacol 536:85–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kubo, M., Matsuda, H., Tomohiro, N. & Yoshikawa, M. Studies on Alismatis rhizoma. I. Anti-allergic effects of methanol extract and six terpene components from Alismatis rhizoma (dried rhizome of Alisma orientale). Biol Pharm Bull 20:511–516 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Makabel, B. et al. Stability and structure studies on alisol a 24-acetate. Chem Pharm Bull 56:41–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Imai, Y., Matsumura, H. & Aramaki, Y. Hypocholesterolemic effect of alisol A-24-monoacetate and its related compounds in rats. Jpn J Pharmacol 20:222–228 (1970).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, W. et al. Anti-proliferative activities of terpenoids isolated from Alisma orientalis and their structure-activity relationships. Anticancer Agents Med Chem 15:228–235 (2015).

    Article  PubMed  Google Scholar 

  18. Mai, Z. P. et al. Protostane Triterpenoids from the Rhizome of Alisma orientale Exhibit Inhibitory Effects on Human Carboxylesterase 2. J Nat Prod 78:2372–2380 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Jin, H. G. et al. A new triterpenoid from Alisma orientale and their antibacterial effect. Arch Pharm Res 35:1919–1926 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Van Hooft, J. A. & Vijverberg, H. P. RS-056812-198: partial agonist on native and antagonist on cloned 5-HT3 receptors. Euro J Pharmacol 322:229–233 (1997).

    Article  Google Scholar 

  21. Zhong, H., Zhang, M. & Nurse, C. A. Electrophysiological characterization of 5-HT receptors on rat petrosal neurons in dissociated cell culture. Brain Res 816:544–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, X. et al. Pharmacological properties of nicotinic acetylcholine receptors expressed by guinea pig small intestinal myenteric neurons. J Pharmacol Exp Ther 302:889–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Campos-Caro, A. et al. Neuronal nicotinic acetylcholine receptors on bovine chromaffin cells: cloning, expression, and genomic organization of receptor subunits. J Neurochem 68:488–497 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Perry, D. C. et al. Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha-3beta4 subtypes in rat tissues by autoradiography. J Neurochem 82:468–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Whiteaker, P. et al. Involvement of the alpha3 subunit in central nicotinic binding populations. J Neurosci 22:2522–2529 (2002).

    CAS  PubMed  Google Scholar 

  26. Maisonneuve, I. M. & Glick, S. D. Anti-addictive actions of an iboga alkaloid congener: a novel mechanism for a novel treatment. Pharmacol Biochem Behav 75:607–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Mulle, C., Vidal, C., Benoit, P. & Changeux, J. P. Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system. J Neurosci 11:2588–2597 (1991).

    CAS  PubMed  Google Scholar 

  28. Quick, M. W., Ceballos, R. M., Kasten, M., McIntosh, J. M. & Lester, R. A. Alpha3beta4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons. Neuropharmacology 38:769–783 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Sheffield, E. B., Quick, M. W. & Lester, R. A. Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. Neuropharmacology 39:2591–2603 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Barnes, J. M. et al. Identification and distribution of 5-HT3 recognition sites within the human brainstem. Neurosci Lett 111:80–86 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Stewart, D. J. Cancer therapy, vomiting, and antiemetics. Can J Physiol Pharm 68:304–313 (1990).

    Article  CAS  Google Scholar 

  32. Jackson, M. B. & Yakel, J. L. The 5-HT3 receptor channel. Annu Rev Physiol 57:447–468 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Farber, L., Haus, U., Spath, M. & Drechsler, S. Physiology and pathophysiology of the 5-HT3 receptor. Scand J Rheumatol 119, 2–8 (2004).

    Article  CAS  Google Scholar 

  34. Haus, U., Spath, M. & Farber, L. Spectrum of use and tolerability of 5-HT3 receptor antagonists. Scand J Rheumatol 119, 12–18 (2004).

    Article  CAS  Google Scholar 

  35. Youn, U. J. et al. Regulation of the 5-HT3A receptormediated current by alkyl 4-hydroxybenzoates isolated from the seeds of Nelumbo nucifera. Chem Biodivers 7:2296–2302 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Haghighi, A. P. & Cooper, E. A molecular link between inward rectification and calcium permeability of neuronal nicotinic acetylcholine alpha3beta4 and alpha4beta2 receptors. J Neurosci 20:529–541 (2000).

    CAS  PubMed  Google Scholar 

  37. Herrero, C. J., Garcia-Palomero, E., Pintado, A. J., Garcia, A. G. & Montiel, C. Differential blockade of rat alpha3beta4 and alpha7 neuronal nicotinic receptors by omega-conotoxin MVIIC, omega-conotoxin GVIA and diltiazem. Br J Pharmacol 127:1375–1387 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kindler, C. H., Verotta, D., Gray, A. T., Gropper, M. A. & Yost, C. S. Additive inhibition of nicotinic acetylcholine receptors by corticosteroids and the neuromuscular blocking drug vecuronium. Anesthesiology 92:821–832 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, Z. Y. et al. A new triterpene and anti-hepatitis B virus active compounds from Alisma orientalis. Planta Medica 72:951–954 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, S. M. et al. Anti-complementary activity of protostane-type triterpenes from Alismatis rhizoma. Arch Pharm Res 26:463–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Matsuda, H. et al. Effects of sesquiterpenes and triterpenes from the rhizome of Alisma orientale on nitric oxide production in lipopolysaccharide-activated macrophages: absolute stereostructures of alismaketones-B 23-acetate and -C 23-acetate. Bioorg Med Chem Lett 9:3081–3086 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Matsuda, H., Tomohiro, N., Yoshikawa, M. & Kubo, M. Studies on Alismatis Rhizoma. II. Anti-complementary activities of methanol extract and terpene components from Alismatis Rhizoma (dried rhizome of Alisma orientale). Biol Pharm Bull 21:1317–1321 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Q. et al. Anti-HBV agents. Part 1: Synthesis of alisol A derivatives: a new class of hepatitis B virus inhibitors. Bioorg Med Chem Lett 18:4647–4650 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, H. W., Hsu, M. J., Chien, C. T. & Huang, H. C. Effect of alisol B acetate, a plant triterpene, on apoptosis in vascular smooth muscle cells and lymphocytes. Euro J Pharmacol 419:127–138 (2001).

    Article  CAS  Google Scholar 

  45. Chou, C. C., Pan, S. L., Teng, C. M. & Guh, J. H. Pharmacological evaluation of several major ingredients of Chinese herbal medicines in human hepatoma Hep3B cells. Eur J Pharm Sci 19:403–412 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J. H. et al. Ginsenoside Rg3 inhibits human Kv1.4 channel currents by interacting with the Lys531 residue. Mol Pharmacol 73:619–626 (2008).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyunsu Bae or Jun-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, H.D., Kim, YM., Lee, S.B. et al. Effects of triterpenoid Alisol-F on human 5-hydroxytryptamine 3A and α3β4 nicotinic acetylcholine receptor channel activity. Mol. Cell. Toxicol. 13, 271–278 (2017). https://doi.org/10.1007/s13273-017-0030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0030-9

Key words

Navigation