Skip to main content
Log in

PGA2 induces the expression of HO-1 by activating p53 in HCT116 cells

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Prostaglandin (PG) A2 which is a cytotoxic PG, was reported to induce the expression of heme oxygenase (HO)-1 via activation of p38MAPK to keep U2OS cells from cell cycle arrest in G2M phase. The expression of HO-1 is primarily regulated at the level of transcription. But the transcription factors that are responsible for PGA2-induced HO-1 expression were not clarified yet. Here, we report that PGA2-induced transcription of HO-1 is mediated by p53, a tumor suppressive transcription factor. In HCT116 cells, PGA2 treatment led to the phosphorylation of p53 and an increase of p21WAF1 transcription as well as the activation of HO-1 transcription. Knocking p53 down via RNA interference or inhibiting the p53’s transcriptional activity by pifithrin-α treatment led to suppression of the increase in the level of both HO-1 expression and activity of HO-1 promoter. Pretreatment of NU-7441, a chemical inhibitor of DNA-activated protein kinase (DNA-PK), prevented both the PGA2-induced phosphorylation of p53 and an increase of HO-1 transcription. In addition, N-acetyl-l-cysteine, a scavenger of reactive oxygen species (ROS), also mimicked the effect of NU-7441 on the PGA2-induced activation of p53 and HO-1 transcription. Collectively, these results suggest that PGA2 induces the expression of HO-1 via activation of p53, which is mediated by the ROS-DNA-PK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Straus, D. S. & Glass, C. K. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 21:185–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, J. H., Kim, H. S., Jeong, S. Y. & Kim, I. K. Induction of p53 and apoptosis by delta 12-PGJ2 in human hepatocarcinoma SK-HEP-1 cells. FEBS Lett 368:348–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, H. S., Rhim, H., Jeong, S. W., Kim, J. W. & Kim, I. K. Induction of apoptosis dependent on caspase activities and growth arrest in HL-60 cells by PGA2. Prostaglandins Other Lipid Mediat 70:169–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ahn, S. G. et al. Sox-4 is a positive regulator of Hep3B and HepG2 cells’ apoptosis induced by prostaglandin (PG)A2 and Δ12-PGJ2. Exp Mol Med 34:243–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Santoro, M. G., Garaci, E. & Amici, C. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells. Proc Natl Acad Sci USA 86:8407–8411 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jackman, J., Alamo, I., Jr. & Fornace, A. J., Jr. Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res 54:5656–5662 (1994).

    CAS  PubMed  Google Scholar 

  7. Choe, Y. J. & Ko, K. W. PGA2-induced HO-1 attenuates G2M arrest by modulating GADD45α expression. Mol Cell Toxicol 11:465–474 (2015).

    Article  CAS  Google Scholar 

  8. Alam, J. & Cook, J. L. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol 36:166–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ryter, S. W., Alam, J. & Choi, A. M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Meiller, A. et al. p53-dependent stimulation of redoxrelated genes in the lymphoid organs of gamma-irradiated-mice identification of Haeme-oxygenase 1 as a direct p53 target gene. Nucleic Acids Res 35:6924–6934 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nam, S. Y. & Sabapathy, K. p53 promotes cellular survival in a context-dependent manner by directly inducing the expression of haeme-oxygenase-1. Oncogene 30:4476–4486 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Roos, W. P. & Kaina, B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 332:237–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Chi, S. W. Structural insights into the transcriptionindependent apoptotic pathway of p53. BMB Rep 47:167–172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang, H. L. et al. Simvastatin induced HCT116 colorectal cancer cell apoptosis through p38MAPK-p53-survivin signaling cascade. Biochim Biophys Acta 1830:4053–4064 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y. Y. et al. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2Ap38MAPK-p53 cascade. Sci Rep 4:5651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodwin, J. F. & Knudsen, K. E. Beyond DNA repair: DNA-PK function in cancer. Cancer Discov 4:1126–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Block, W. D. et al. Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends. Nucleic Acids Res 32:4351–4357 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meek, K., Lees-Miller, S. P. & Modesti, M. N-terminal constraint activates the catalytic subunit of the DNAdependent protein kinase in the absence of DNA or Ku. Nucleic Acids Res 40:2964–2973 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Toulany, M. et al. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Res 10:945–957 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Solecki, G. M. et al. Genotoxic properties of cyclopentenone prostaglandins and the onset of glutathione depletion. Chem Res Toxicol 26:252–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Honn, K. V. & Marnett, L. J. Requirement of a reactive alpha, beta-unsaturated carbonyl for inhibition of tumor growth and induction of differentiation by “A” series prostaglandins. Biochem Biophys Res Commun 129:34–40 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403:103–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Kansanen, E., Kivela, A. M. & Levonen, A. L. Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12,14-prostaglandin J2. Free Radic Biol Med 47:1310–1317 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Moos, P. J., Edes, K. & Fitzpatrick, F. A. Inactivation of wild-type p53 tumor suppressor by electrophilic prostaglandins. Proc Natl Acad Sci USA 97:9215–9220 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobayashi, M. et al. ATM activation by a sulfhydrylreactive inflammatory cyclopentenone prostaglandin. Genes Cells 11:779–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Amici, C., Sistonen, L., Santoro, M. G. & Morimoto, R. I. Antiproliferative prostaglandins activate heat shock transcription factor. Proc Natl Acad Sci USA 89:6227–6231 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haskew-Layton, R. E., Payappilly, J. B., Xu, H., Bennett, S. A. & Ratan, R. R. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) protects neurons from oxidative death via an Nrf2 astrocyte-specific mechanism independent of PPARgamma. J Neurochem 124:536–547 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, X. et al. Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. J Biol Chem 279:49298–49306 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Gorospe, M. HuR in the mammalian genotoxic response: post-transcriptional multitasking. Cell Cycle 2:412–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, J., Di, J., Cao, H., Bai, J. & Zheng, J. p53-mediated autophagic regulation: A prospective strategy for cancer therapy. Cancer Lett 363:101–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Otterbein, L. E. et al. Heme oxygenase-1 and carbon monoxide modulate DNA repair through ataxia-telangiectasia mutated (ATM) protein. Proc Natl Acad Sci USA 108:14491–14496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, H. S. et al. Identification of novel Wilms’ tumor suppressor gene target genes implicated in kidney development. J Biol Chem 282:16278–16287 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Shik Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Lee, SS., Park, JY. et al. PGA2 induces the expression of HO-1 by activating p53 in HCT116 cells. Mol. Cell. Toxicol. 13, 189–196 (2017). https://doi.org/10.1007/s13273-017-0020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0020-y

Keywords

Navigation