Skip to main content
Log in

Exploring potential biomarker responses to lithium in Daphnia magna from the perspectives of function and signaling networks

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Intensive usage of electronic appliances containing lithium batteries causes an accumulation of e-trash. Environmental exposure to lithium batteries contaminates ecosystems. In air and water, the batteries form lithium hydroxide (LiOH) on their surfaces. LiOH enters the aquatic environment and contaminates the aquatic ecosystem by being absorbed into biological organisms. In this study, in order to identify meaningful potential biomarkers that appear in response to lithium, we measured significantly up- and down-regulated genes after LiOH exposure by conducting a microarray. In addition, we explored the functions of differentially expressed daphnia genes, and we conducted a comparative analysis in other species, Daphnia spp. to humans, then analyzed the signaling pathways using the human gene set derived from daphnia sequences that are differentially expressed in response to LiOH using the NCBI-BLAST tool and Pathway studio. As a result, we identified signaling pathways and suggested several potential biomarkers that are up- or down-regulated in response to lithium. This study may contribute to the development of a biomonitoring system which can detect the ecotoxicity of lithium. Furthermore, lithium toxicity in humans can be predicted, so the study may also provide potential biomarkers of lithium exposure in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kszos, L. A. & Stewart, A. J. Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 12:439–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Moshtev, R. et al. Synthesis, XRD characterization and electrochemical performance of overlithiated LiNiO2, J Power Sources 81–82:434 (1999).

    Article  Google Scholar 

  3. Sun, H.J. et al. Characterization of Atmospheric H2-Plasma-Treated LiNi1/3Co1/3Mn1/3O2 as Cathode Materials in Lithium Rechargeable Batteries. Trans. of the Korean Hydrogen and New Energy Society 24:160–171 (2013).

    Article  Google Scholar 

  4. Anderson, B. The Toxicity Thresholds of Various Sodium Salts Determined by the Use of Daphnia magna. Sewage Works Journal 18:82–87 (1946).

    CAS  PubMed  Google Scholar 

  5. Emery, R., Klopfer, D. C. & Skalski, J. R. Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat. PNL-3640,UC-11 364 (1981).

    Book  Google Scholar 

  6. Hamilton, S. J. Hazard assessment of inorganic to three endangered fish in the Green River, Utah. Ecotoxicol Environ Safety 30:134–142 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Long, K. E., Brown, R. P. Jr & Woodburn, K. B. Lithium chloride: a flow-through embryo-larval toxicity test with the fathead minnow, Pimephales promelas Rafinesque. Bull Environ Contam Toxicol 60:312–317 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Dwyer, F. J., Burch, S. A., Ingersoll, C. G. & Hunn, J. B. Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna. Environ Toxicol Chem 11:513–520 (2011).

    Article  Google Scholar 

  9. Schindler, D. W. Detecting ecosystem responses to anthropogenic stress. Can J Fish Aquat Sci 44:6–25 (1987).

    Article  CAS  Google Scholar 

  10. Sarma, S. S. S. & Nandini, S. Review of Recent Ecotoxicological Studies on Cladocerans. J Environ Sci Health B 41:1417–1430 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Connon, R. et al. Linking molecular and population stress responses in Daphnia magna exposed to cadmium. Environ Sci Technol 42:2181–2188 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Tatarazako, N., Oda, S., Watanabe, H., Morita, M. & Iguchi, T. Juvenile hormone agonists affect the occurrence of male Daphnia. Chemosphere 53:827–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Klaper, R. et al. Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: Changes in toxicity with functionalization. Environ Pollut 157:1152–1156 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, H. J., Koedrith, P. & Seo, Y. R. Ecotoxicogenomic Approaches for Understanding Molecular Mechanisms of Environmental Chemical Toxicity Using Aquatic Invertebrate, Daphnia Model Organism. Int J Mol Sci 16:12261–12287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stranger, B. E. & Dermitzakis, E. T. The genetics of regulatory variation in the human genome. Human Genomics 2:126–131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shaw, J. R. et al. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins. BMC Genomics 8:477 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mochida, K. & Shinozaki, K. Advances in Omics and Bioinformatics Tools for Systems Analyses of Plant Functions. Plant Cell Physiol 52:2017–2038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Timmer, R. T. & Sands, J. M. Lithium Intoxication. J Am Soc Nephrol 10:666–674 (1999).

    CAS  PubMed  Google Scholar 

  19. Salocks, C. & Kaley, K. B. Lithium. In: Kaley KB (ed): Technical Support Document: Toxicology Clandestine Drug Labs: Methamphetamine. 1:10 (2003).

    Google Scholar 

  20. Bagetta, G. et al. Lithium and tacrine increase the expression of nitric oxide synthase mRNA in the hippocampus of rat. Biochem Biophys Res Commun 197:1132–1139 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Kjølholt, J., Stuer-Lauridsen, F., Skibsted, M., Havelund, S. A. The Elements in the Second Rank - an Environmental Problem Now or in the Future? Environmental Project No. 770. Miljøprojekt. Danish EPA. Danish Ministry of the Environment (2003).

    Google Scholar 

  22. Andersen, S. O., Højrup, P. & Roepstorff, P. Insect cuticular proteins. Insect Biochem Mol Biol 25:153–176 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Stankiewicz, B. A. et al. Biodegradation of the chitinprotein complex in crustacean cuticle. Organic Geochemistry 28:67–76 (1998).

    Article  CAS  Google Scholar 

  24. Welinder, B. S. The crustacean cuticle - I. Studies on the composition of the cuticle. Comp Biochem Physiol Part A Physiology 47:779–787 (1974).

    Article  CAS  Google Scholar 

  25. Merzendorfer, H. & Zimoch, L. Chitin metabolism in insect: structure, function and regulation of chitin synthases and chitinase. J Exp Biol 206:4393–4412 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Havemann, J. et al. Cuticle differentiation in the embryo of the amphipod crustacean Parhyale hawaiensis. Cell Tissue Res 332:359–370 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jeong, S. W. et al. Genomic expression responses toward bisphenol - A toxicity in Daphnia magna in terms of reproductive activity. Mol Cell Tox 9:149–158 (2013).

    Article  CAS  Google Scholar 

  28. Locke, M. The Wigglesworth lecture: Insects for studying fundamental problems in biology. J Insect Physiol 47:495–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Otte, K. A., Fröhlich, T., Arnold, G. J. & Laforsch, C. Proteomic analysis of Daphnia magna hints at molecular pathways involved in defensive plastic responses. BMC Genomics 24:306 (2014).

    Article  Google Scholar 

  30. Allagui, M. S., Vincent, C., El Feki, A., Gaubin, Y. & Croute, F. Lithium toxicity and expression of stress-related genes or proteins in A549 cells. Biochim Biophys Acta 1773:1107–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kregel, K. C. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Schreier, T., Degen, E. & Baschong, W. Fibroblast migration and proliferation during in vitro wound healing. A quantitative comparison between various growth factors and a low molecular weight blood dialysate used in the clinic to normalize impaired wound healing. Res Exp Med (Berl) 193:195–205 (1993).

    Article  CAS  Google Scholar 

  33. Beyaert, R. et al. Lithium chloride potentiates tumor necrosis factor-mediated cytotoxicity in vitro and in vivo. Proc Natl Acad Sci USA 86:9494–9498 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beyaert, R. et al. Enhancement of tumor necrosis factor cytotoxicity by lithium chloride is associated with increased inositol phosphate accumulation. J Immunol 151:291–300 (1993).

    CAS  PubMed  Google Scholar 

  35. Yoshioka, W. et al. Severe toxicity and cyclooxygenase (COX)-2 mRNA increase by lithium in the neonatal mouse kidney. J Toxicol Sci 34:519–525 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Zaidan, M. et al. Increased risk of solid renal tumors in lithium-treated patients. Kidney Int 86:184–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Engel, T. et al. Lithium, a potential protective drug in Alzheimer’s disease. Neurodegener Dis 5:247–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Nunes, M. A., Viel, T. A. & Buck, H. S. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr Alzheimer Res 10:104–107 (2013).

    CAS  PubMed  Google Scholar 

  39. Ehlers, M. R. W. & Riordan, J. F. Angiotensin-converting enzyme - new concepts concerning its biological role. Biochemistry 28:5311–5318 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Erdos, E. G. Angiotensin-I converting enzyme and the changes in our concepts through the years - Lewis K. Dahl Memorial Lecture. Hypertension 16:363–370 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Isaac, R. E. et al. Toward a role for angiotensin-converting enzyme in insects. Ann NY Acad Sci 839:288–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Tatei, K., Cai, H., Ip, Y. T. & Levine, M. Race: a Drosophila homologue of the angiotensin converting enzyme. Mech Dev 51:157–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Kato, Y., Kobayashi, K., Watanabe, H. & Iguchi, T. Environmental sex determination in the branchiopod crustacean Daphnia magna: deep conservation of a Doublesex gene in the sex-determining pathway. PLoS Genet 7(3), Epub (2011).

    Google Scholar 

  44. Bruns, G. A. & Gerald, P. S. Human glyceraldehyde-3-phosphate dehydrogenase in man - rodent somatic cell hybrids. Science 192:54–56 (1976).

    Article  CAS  PubMed  Google Scholar 

  45. Sirover, M. A. New insights into an old protein: The functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432:159–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Nicholls, C., Li, H. & Liu, J. P. GAPDH: a common enzyme with uncommon functions. Clin Exp Pharmacol Physiol 39:674–679 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Colell, A., Green, D. R. & Ricci, J. E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 16:1573–1581 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Guo, C., Liu, S. & Sun, M. Z. Novel insight into the role of GAPDH playing in tumor. Clin Transl Oncol 15:167–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Altenberg, B. & Greulich, K. O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84:1014–1020 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wonhee Jang or Young Rok Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Yang, J.H., Kim, H.S. et al. Exploring potential biomarker responses to lithium in Daphnia magna from the perspectives of function and signaling networks. Mol. Cell. Toxicol. 13, 83–94 (2017). https://doi.org/10.1007/s13273-017-0009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0009-6

Keywords

Navigation