Skip to main content
Log in

The effects of methionine on TCE-induced DNA methylation and mRNA expression changes in mouse liver

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Trichloroethylene (TCE) had been shown to induce aberrant DNA methylation changes in mouse liver, which could be critical in the development of hepatocellular carcinoma. To understand the effect of methionine, a methyl donor, on TCE-induced mouse liver cancer, we exposed B6C3F1 mice to TCE in the presence or absence of methionine. We found that supplementation with methionine attenuated the TCE-induced hypo- and hyper-methylation status of Cdkn1a and Ihh in mouse liver, respectively. The TCE-induced mRNA expression changes of Cdkn1a, Ihh and Jun were also alleviated by methionine. However, methionine supplementation accelerated the TCE-induced mRNA over-expression of Mki67, and enhanced the TCE-induced mRNA down-regulation of Dnmt3a and Tet2. In summary, our results showed that methionine could attenuate at least part of the TCE-induced DNA methylation changes, but the additional gene expression changes induced by supplementary of methionine does not support the assumption that methionine could prevent TCE-induced liver carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EPA, U. S. (U.S. Environmental Protection Agency). Toxicological review of trichloroethylene. In Support of Summary Information on the Integrated Risk Information System (IRIS) (2012).

    Google Scholar 

  2. Sano, Y. et al. Trichloroethylene liver toxicity in mouse and rat: microarray analysis reveals species differences in gene expression. Arch Toxicol 83:835–849 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Hasselbach, L., Haase, S., Fischer, D., Kolberg, H. C. & Sturzbecher, H. W. Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol 26:589–598 (2005).

    CAS  PubMed  Google Scholar 

  4. Guha, N. et al. Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. Lancet Oncol 13:1192–1193 (2012).

    Article  PubMed  Google Scholar 

  5. Pogribny, I. P. et al. Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593:80–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Da, M. X., Zhang, Y. B., Yao, J. B. & Duan, Y. X. DNA methylation regulates expression of VEGF-C, and Sadenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth. Braz J Med Biol Res 47:1021–1028 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Inoue-Choi, M. et al. Plasma S-adenosylmethionine, DNMT polymorphisms, and peripheral blood LINE-1 methylation among healthy Chinese adults in Singapore. BMC Cancer 13:389 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Richardson, C. RAD51, genomic stability, and tumorigenesis. Cancer Lett 218:127–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Tao, L., Ge, R., Xie, M., Kramer, P. M. & Pereira, M. A. Effect of trichloroethylene on DNA methylation and expression of early-intermediate protooncogenes in the liver of B6C3F1 mice. J Biochem Mol Toxicol 13:231–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Tao, L., Yang, S., Xie, M., Kramer, P. M. & Pereira, M. A. Effect of trichloroethylene and its metabolites, dichloroacetic acid and trichloroacetic acid, on the methylation and expression of c-Jun and c-Myc protooncogenes in mouse liver: prevention by methionine. Toxicol Sci 54:399–407 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Pereira, M. A., Wang, W., Kramer, P. M. & Tao, L. Prevention by methionine of dichloroacetic acid-induced liver cancer and DNA hypomethylation in mice. Toxicol Sci 77:243–248 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Palbykin, B. et al. Trichloroethylene induces methylation of the Serca2 promoter in H9c2 cells and embryonic heart. Cardiovasc Toxicol 11:204–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Caldwell, P. T. et al. Gene expression profiling in the fetal cardiac tissue after folate and low-dose trichloroethylene exposure. Birth Defects Res A Clin Mol Teratol 88:111–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, Y., Chen, J., Tong, J. & Chen, T. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver. PLoS One 9:e116179 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. McNeil, C. TCE, designated a known carcinogen, now the focus of ongoing research. J Natl Cancer Inst 105:1518–1519 (2013).

    Article  PubMed  Google Scholar 

  16. Alhosin, M. et al. Down-regulation of UHRF1, associated with re-expression of tumor suppressor genes, is a common feature of natural compounds exhibiting anti-cancer properties. J Exp Clin Cancer Res 30:41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kinney, S. R. & Pradhan, S. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer. Adv Exp Med Biol 754:57–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Noh, J. S. et al. DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures. Proc Natl Acad Sci U S A 102:1749–1754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pissios, P. et al. Methionine and choline regulate the metabolic phenotype of a ketogenic diet. Mol Metab 2:306–313 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramdhan, D. H. et al. Differential response to trichloroethylene-induced hepatosteatosis in wild-type and PPARalpha-humanized mice. Environ Health Perspect 118:1557–1563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palazzo, M. et al. Ki67 proliferation index, hepatic tumor load, and pretreatment tumor growth predict the antitumoral efficacy of lanreotide in patients with malignant digestive neuroendocrine tumors. Eur J Gastroenterol Hepatol 25:232–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Ge, R. et al. Wy-14,643-induced hypomethylation of the c-myc gene in mouse liver. Toxicol Sci 62:28–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Counts, J. L. et al. Cell proliferation and global methylation status changes in mouse liver after phenobarbital and/or choline-devoid, methionine-deficient diet administration. Carcinogenesis 17:1251–1257 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, T. et al. Gene expression and epigenetic changes by furan in rat liver. Toxicology 292:63–70 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, W., Kramer, P. M., Yang, S., Pereira, M. A. & Tao, L. Reversed-phase high-performance liquid chromatography procedure for the simultaneous determination of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in mouse liver and the effect of methionine on their concentrations. J Chromatogr B Biomed Sci Appl 762:59–65 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Jiang or Tao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, H., Aniagu, S. et al. The effects of methionine on TCE-induced DNA methylation and mRNA expression changes in mouse liver. Mol. Cell. Toxicol. 13, 59–64 (2017). https://doi.org/10.1007/s13273-017-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0006-9

Keywords

Navigation