Skip to main content

Ultraviolet radiation: DNA damage, repair, and human disorders

Abstract

Ultraviolet (UV) radiation is one of the most common environmental health hazards that cause highly toxic effects in most living organisms. UV irradiation leads to harmful effects including skin aging, eye damage, and skin cancer because of increased production of cellular reactive oxygen species and by direct DNA damage. Damaged DNA, if not properly repaired, is a source of mutation, and interferes with many cellular mechanisms such as replication, transcription, and the cell cycle. Because most UV damaged DNA is efficiently repaired by nucleotide excision repair (NER), which is a specialized UV-induced DNA damage repair system, many UV-induced symptoms are closely related to NER. Therefore, understanding the function of NER genes will elucidate the cause of different UV-induced symptoms. Furthermore, a multidisciplinary understanding of damaged DNA repair systems and other cellular mechanisms affected by unrepaired DNA damage would lead to an improved understanding of UV-induced symptoms and toward developing various preventive and therapeutic methods against UV damage. For this purpose, in this review we discuss two NER-related human genetic disorders, xeroderma pigmentosum (XP) and Cockayne syndrome (CS), the cellular mechanisms that are impaired by defective NER genes, and the functions of RAD2/XPG in relation to the cause of various UV damage-induced symptoms.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yagura, T., Makita, K., Yamamoto, H., Menck, C. F. M. & Schuch, A. P. Biological sensors for solar ultraviolet radiation. Sensors 11:4277–4294 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Amaro-Ortiz, A., Yan, B. & D’Orazio, J. A. Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation. Molecules 19:6202–6219 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Holick, M. F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 80(suppl): 1678S–1688S (2004).

    CAS  PubMed  Google Scholar 

  4. 4.

    Hoeijmakers, J. H. J. Genome maintenance mechanisms for preventing cancer. Nature 411:366–374 (2001).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Lee, S.-K., Yu, S.-L., Prakash, L. & Prakash, S. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription: implication for Cockayne syndrome. Cell 109:823–834 (2002).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kang, M.-S. et al. Mitotic catastrophe induced by overexpression of budding yeast Rad2p. Yeast 27:399–411 (2010).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Kang, M.-S. et al. Yeast RAD2, a homolog of human XPG, plays a key role in the regulation of the cell cycle and actin dynamics. Biol Open 3:29–41 (2014).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Norval, M. et al. The human health effects of ozone depletion and interactions with climate change. Photochem Photobiol Sci 10:199–225 (2011).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Egly, J.-M. & Coin, F. A history of TFIIH: Two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair 10:714–721 (2011).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Nouspikel, T. Nucleotide excision repair: variations on versatility. Cell Mol Life Sci 66:994–1009 (2009).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Edifizi, D. & Schumacher, B. Genome instability in development and aging: Insights from nucleotide excision repair in humans, mice, and worms. Biomolecules 5:1855–1869 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    DiGiovanna, J. J. & Kraemer, K. H. Shining a light on xeroderma pigmentosum. J Invest Dermatol 132:785–796 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kraemer, K. H., Lee, M.-M., Andrews, A. D. & Lambert, W. C. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. Arch Dermatol 130:1018–1021 (1994).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Lehmann, A. R., McGibbon, D. & Stefanini, M. Xeroderma pigmentosum. Orphanet J Rare Dis 6:70 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Laugel, V. Cockayne syndrome: The expanding clinical and mutational spectrum. Mech Ageing Develop 134:167–170 (2013).

    Article  Google Scholar 

  16. 16.

    Lindenbaum, Y. et al. Xeroderma pigmentosum/Cockayne syndrome complex: first neuropathological study and review of eight other cases. Eur J paed Neur 5:225–242 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am J Med Genet 42:68–84 (1992).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kubota, M. et al. Nationwide survey of Cockayne syndrome in Japan: Incidence, clinical course and prognosis. Ped Int 57:339–347 (2015).

    Article  Google Scholar 

  19. 19.

    Zhang, W. R., Garrett, G. L., Cleaver, J. E. & Arron, S. T. Absence of skin cancer in the DNA repair-deficient disease Cockayne syndrome (CS): A survey study. J Am Acad Dermatol 74:1270–1272 (2016).

    Article  PubMed  Google Scholar 

  20. 20.

    Vidak, S. & Foisner, R. Molecular insights into the premature aging disease progeria. Histochem Cell Biol 145:401–417 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Navarro, C. L., Cau, P. & Lévy, N. Molecular bases of progeriod syndromes. Human Mol Genet 15:R151–R161 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    Proietti-De-Santis, L., Drané, P. & Egly, J.-M. Cockayne syndrome B protein regulates the transcription program after UV irradiation. EMBO J 25:1915–1923 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Fousteri, M., Vermeulen, W., van Zeeland, A. A. & Mullenders, L. H. F. Cockayne syndrome A and B protein differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol Cell 23:471–482 (2006).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Schärer, O. D. The molecular basis for different disease states caused by mutations in TFIIH and XPG. DNA repair 7:339–344 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Narita, T., Narita, K., Takedachi, A., Saijo, M. & Tanaka, K. Regulation of transcription elongation by the XPG-TFIIH complex is implicated in Cockayne syndrome. Mol Cell Biol 35:3178–3188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Reid-Bayliss, K. S., Arron, S. T., Loeb, L. A., Bezrookove, V. & Cleaver, J. E. Why Cockayne syndrome patients do not get cancer despite their DNA repair deficiency. Proc Natl Acad Sci USA 113:10151–10156 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kaeberlein, M. Lessons on longevity from budding yeast. Nature 464:513–519 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lee, S.-K., Johnson, R. E., Yu, S.-L., Prakash, L. & Prakash, S. Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286:2339–2342 (1999).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Constantinou, A. et al. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 274:5637–5648 (1999).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Clarkson, S. G. The XPG story. Biochimie 85:1113–1121 (2003).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Gary, R., Ludwig, D. L., Cornelius, H. L., MacInnes, M. A. & Park, M. S. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem 272:24522–24529 (1997).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Shiomi, N. et al. Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA-mediated knockin method. Mol Cell Biol 24:3712–3719 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Yu, S.-L. et al. The PCNA binding domain of Rad2p plays a role in mutagenesis by modulating the cell cycle in response to DNA damage. DNA Repair 16:1–10 (2014).

    Article  PubMed  Google Scholar 

  34. 34.

    Trego, K. S. et al. The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle 10:1998–2007 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP-G/CS patients. Mol Cell 26:231–243 (2007).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Iyer, N., Reagan, M. S., Wu, K.-J., Canagarajah, B. & Friedberg, E. C. Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35:2157–2167 (1996).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Nouspikel, T., Lalle, P., Leadon, S. A., Cooper, P. K. & Clarkson, S. G. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: Implications for a second XPG function. Proc Natl Acad Sci USA 94:3116–3121 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Nicolet, C. M. & Friedberg, E. C. Overexpression of the RAD2 gene of Saccharomyces cerevisiae: Identification and preliminary characterization of Rad2 protein. Yeast 3:149–160 (1987).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Weinert, T. DNA damage checkpoints update: getting molecular. Curr Opin Genet Develop 8:185–193 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    Batenburg, N., Thompson, E. L., Hendrickson, E. A. & Zhu, X.-D. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation. EMBO J 34:1399–1416 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Formigli, L., Meacci, E., Zecchi-Orlandini, S. & Orlandini, G. E. Cytoskeletal reorganization in skeletal muscle differentiation: from cell morphology to gene expression. Eur J Histochem 51(supp 1):21–28 (2007).

    PubMed  Google Scholar 

  42. 42.

    Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326:1208–1212 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hsu, F.-F., Lin, T.-Y., Chen, J.-Y. & Shieh, S.-Y. P53-mediated transactivation of LIMK2b links actin dynamics to cell cycle checkpoint control. Oncogene 29:2864–2876 (2010).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 113:365–375 (2000).

    CAS  PubMed  Google Scholar 

  45. 45.

    Goellner, B. & Aberle, H. The synaptic cytoskeleton in development and disease. Develop Neurobiol 72:111–125 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Revert, I., Feeney, L., Tang, A. A., Huang, E. J. & Cleaver, J. E. Dysmyelination not demyelination causes neurological symptoms in preweaned mice in a murine model of Cockayne syndrome. Proc Natl Acad Sci USA 109:4627–4632 (2012).

    Article  Google Scholar 

  47. 47.

    McMurray, C. T. Neurodegeneration: diseases of the cytoskeleton? Cell Death Differen 7:861–865 (2000).

    CAS  Article  Google Scholar 

  48. 48.

    Hotulainen, P. & Hoogenraad, C. C. Actin in dendritic spines: connecting dynamics to function. J Cell Biol 189:619–629 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Tomicic, M. T. et al. Delayed c-Fos activation in human cells triggers XPF induction and an adaptive response to UVC-induced DNA damage and cytotoxicity. Cell Mol Life Sci 38:1785–1798 (2011).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sung-Keun Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, SL., Lee, SK. Ultraviolet radiation: DNA damage, repair, and human disorders. Mol. Cell. Toxicol. 13, 21–28 (2017). https://doi.org/10.1007/s13273-017-0002-0

Download citation

Keywords

  • UV
  • NER
  • XP
  • CS
  • RAD2/XPG
  • Actin dynamics