Skip to main content
Log in

A toxicogenomic study for the investigation of genotoxicity-related signaling networks in long-term and low dose lead exposed rat kidney

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Lead is a representative heavy metal used in the manufacture of various products. Humans are exposed to lead through their daily and occupational environment. Diverse occupational usage of lead causes long-term and low dose exposure to humans. Although several studies have investigated lead toxicity in the kidneys, lead-induced genotoxicity is poorly studied in the in vivo system of kidney. In this study, we identified the molecular mechanism for biological changes and suggest the possibility of biomarkers through a molecular mechanism under lead exposure. We detected a significant lead-induced genotoxic effect in the kidneys using the comet assay following long term and low dose exposure in vivo. Furthermore, we investigated the signaling networks between lead-induced genotoxicity and the differential expression of the identified genes using a toxicogenomic approach. We identified 4 representative genes (CRY1, PER2, DDIT4, and TET2) which were key in the lead-induced signaling networks. Through the result of our study, we suggest a biomarker of long-term and low level lead exposure, as well as potential biological pathways induced by lead exposure in the kidneys. Our toxicogenomic study reveals biomarkers for the understanding of lead toxicity evaluation in the kidneys, and will be utilized in further studies on the mechanism of lead toxicity in the kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Inorganic and organic lead compounds. IARC Monogr Eval Carcinog Risks Hum 87:1–471 (2006).

  2. Flora, G., Gupta, D. & Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip Toxicol 5:47–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duruibe, J. O., Ogwuegbu, M. O. C. & Egwurugwu, J. N. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences 2:112–118 (2007).

    Google Scholar 

  4. Verschoor, M., Wibowo, A., Herber, R., van Hemmen, J. & Zielhuis, R. Influence of occupational low-level lead exposure on renal parameters. American journal of industrial medicine 12:341–351 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Needleman, H. Lead poisoning. Annual Review of Medicine 55:209–222 (2003).

    Article  Google Scholar 

  6. Kim, R. et al. A longitudinal study of low-level lead exposure and impairment of renal function. The Normative Aging Study. Jama 275:1177–1181 (1996).

    CAS  PubMed  Google Scholar 

  7. Staessen, J. A. et al. Impairment of renal function with increasing blood lead concentrations in the general population. The Cadmibel Study Group. N Engl J Med 327:151–156 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Hu, H. et al. The relationship of bone and blood lead to hypertension. The Normative Aging Study. Jama 275: 1171–1176 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz, J. Lead, blood pressure, and cardiovascular disease in men and women. Environ Health Perspect 91:71–75 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng, Y. et al. Electrocardiographic conduction disturbances in association with low-level lead exposure (the Normative Aging Study). Am J Cardiol 82:594–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Park, S. K. et al. Low-level lead exposure, metabolic syndrome, and heart rate variability: the VAN or mative Aging Study. Environ Health Perspect 114:1718–1724 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Loghman-Adham, M. Renal effects of environmental and occupational lead exposure. Environ Health Perspect 105:928–938 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdel Moneim, A. E., Dkhil, M. A. & Al-Quraishy, S. The protective effect of flaxseed oil on lead acetate-induced renal toxicity in rats. J Hazard Mater 194:250–255 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Oyagbemi, A. A. et al. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environ Toxicol 30:1235–1243 (2015).

    Article  PubMed  Google Scholar 

  15. Oberley, T. D., Friedman, A. L., Moser, R. & Siegel, F. L. Effects of lead administration on developing rat kidney.II.Functional, morphologic, and immunohistochemical studies. Toxicol Appl Pharmacol 131:94–107 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Karimfar, M. H., Bargahi, A., Moshtaghi, D. & Farzadinia, P. Long-Term Exposure of Lead Acetate on Rabbit Renal Tissue. Iran Red Crescent Med J 18:e22157 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Danadevi, K., Rozati, R., Saleha Banu, B., Hanumanth Rao, P. & Grover, P. DNA damage in workers exposed to lead using comet assay. Toxicology 187:183–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Palus, J. et al. Genotoxic effects of occupational exposure to lead and cadmium. Mutat Res 540:19–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kang, S. H., Kwon, J. Y., Lee, J. K. & Seo, Y. R. Recent advances in in vivo genotoxicity testing: prediction of carcinogenic potential using comet and micronucleus assay in animal models. J Cancer Prev 18:277–288 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bouton, C. M., Hossain, M A., Frelin, L. P., Laterra, J. & Pevsner, J. Microarray analysis of differential gene expression in lead-exposed astrocytes. Toxicol Appl Pharmacol 176:34–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Peterson, S. M., Zhang, J, Weber, G & Freeman, J. L. Global gene expression analysis reveals dynamic and developmental stage-dependent enrichment of lead-induced neurological gene alterations. Environ Health Perspect 119:615–621 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Lesko, L. J. & Woodcock, J. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat Rev Drug Discov 3:763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Lord, P. G. Progress in applying genomics in drug development. Toxicol Lett 149:371–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Koedrith, P., Kim, H., Weon, J. I. & Seo, Y. R. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health 216:587–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Alcaraz-Contreras, Y. et al. Silymarin and dimercaptosuccinic acid ameliorate lead-induced nephrotoxicity and genotoxicity in rats. Hum Exp Toxicol 35:398–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Devi, K. D., Banu, B. S., Grover, P. & Jamil, K. Genotoxic effect of lead nitrate on mice using SCGE (comet assay). Toxicology 145:195–201 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microacdcrray. Science 270:467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Hayes, K. R. & Bradfield, C. A. Advances in toxicogenomics. Chem Res Toxicol 18:403–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Cliby, W. A. et al. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J 17:159–169 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wright, J. A. et al. Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control. Proc Natl Acad Sci USA 95:7445–7450 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2: R271–277 (2006).

    Article  Google Scholar 

  33. Matsuo, T. et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Unsal-Kacmaz, K, Mullen, T. E., Kaufmann, W. K. & Sancar, A. Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25:3109–3116 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kondratov, R. V. & Antoch, M. P. Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol 17:311–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, C. C. The circadian clock and tumor suppression by mammalian period genes. Methods Enzymol 393:852–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Gery, S. et al. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22:375–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Song, C. X. & He, C. Potential functional roles of DNA demethylation intermediates. Trends Biochem Sci 38:480–484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Solary, E., Bernard, O. A., Tefferi, A., Fuks, F. & Vainchenker, W. The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 28:485–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Ko, M. et al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci USA 108:14566–14571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Gal-Yam, E. N., Saito, Y., Egger, G. & Jones, P. A. Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med 59:267–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Ellisen, L. W. et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10: 995–1005 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Jia, W et al. REDD1 and p-AKT over-expression may predict poor prognosis in ovarian cancer. Int J Clin Exp Pathol 7:5940–5949 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Whitney, M. L., Jefferson, L. S. & Kimball, S. R. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem Biophys Res Commun 379:451–455 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Rok Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Lee, H.J., Kim, Y.J. et al. A toxicogenomic study for the investigation of genotoxicity-related signaling networks in long-term and low dose lead exposed rat kidney. Mol. Cell. Toxicol. 12, 437–445 (2016). https://doi.org/10.1007/s13273-016-0048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-016-0048-4

Keywords

Navigation