Skip to main content
Log in

Analysis of ovarian gene expression in F2 mouse following perinatal exposure to DEHP via the parenteral route

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

The aim of this study is analyze the gene expression of the F2 mouse in comparison with the control mouse after exposure of F0 mouse to Di-ethyl hexyl phthalate (DEHP) via the parenteral route during the perinatal period. For this purpose, pregnant F0 mice were injected subcutaneously with corn oil (control group, n=3) or DEHP (treatment group, 30 μg/kg/day, n=3) during pregnancy and lactation. No further treatment was given after weaning of F1 mice. F1 mice were mated and delivered. Six F2 female mice from each group were randomly selected and total RNA was extracted from the ovaries. Microarrays were used to identify the genes and pathways affected by DEHP exposure. As a result, genes related with certain gynecological diseases showed significant changes in expressions. Genes, which were involved in MAPK signaling pathway, p53 signaling pathway, cell cycle, and oocyte maturation, showed significant changes in expression, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, B. J., Weaver, R., Gaines, L. J. & Heindel, J. J. Mono-(2-ethylhexyl) phthalate suppresses estradiol production independent of FSH-cAMP stimulation in rat granulosa cells. Toxicol Appl Pharmacol 128:224–228 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Lovekamp, T. N. & Davis, B. J. Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol 172:217–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Davis, B. J., Maronpot, R. R. & Heindel, J. J. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol 128:216–223 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Koo, H. J. & Lee, B. M. Estimated exposure to phthalates in cosmetics and risk assessment. J Toxicol Environ Health Part A 67:1901–1914 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Guo, Y., Wang, L. & Kannan, K. Phthalates and parabens in personal care products from China: concentrations and human exposure. Arch Environ Contam Toxicol 66:113–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Luo, H. et al. Evaluation of the Di(2-ethylhexyl)phthalate released from polyvinyl chloride medical devices that contact blood. SpringerPlus 3:58 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huygh, J. et al. Considerable exposure to the endocrine disrupting chemicals phthalates and bisphenol-A in intensive care unit (ICU) patients. Environ Int 81:64–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Singh, A. R., Lawrence, W. H. & Autian, J. Maternalfetal transfer of 14C-di-2-ethylhexyl phthalate and 14Cdiethyl phthalate in rats. J Pharm Sci 64:1347–1350 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Hopf, N. B. et al. Skin permeation and metabolism of di(2-ethylhexyl)phthalate (DEHP). Toxicol Lett 224:47–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Quinnies, K. M., Doyle, T. J., Kim, K. H. & Rissman, E. F. Transgenerational effects of Di-(2-Ethylhexyl) Phthalate (DEHP) on stress hormones and behavior. Endocrinol 156:3077–3083 (2015).

    Article  CAS  Google Scholar 

  11. Manikkam, M., Tracey, R., Guerrero-Bosagna, C. & Skinner, M. K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8:e55387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho, H. H., Kim, G. W. & Ryu, J. C. The effects of Di-2-ethylhexyl phthalates (DEHP) on the cell cycle of the endometrial cancer cell lines (ECC-1). Toxicol Environ Health Sci 6:217–223 (2014).

    Article  Google Scholar 

  13. Doull, J. et al. A cancer risk assessment of di(2-ethylhexyl) phthalate: application of the new U.S. EPA risk assessment guidelines. Regul Toxicol Pharm 29:327–357 (1999).

    Article  CAS  Google Scholar 

  14. Morrison, D. K. MAP kinase pathways. Cold Spring Harb Perspect Biol 4:a011254 (2012).

  15. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bulavin, D. V. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thornton, T. M. & Rincon, M. Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int J Biol Sci 5:44–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Jin, S. et al. Gadd45a contributes to p53 stabilization in response to DNA damage. Oncogene 22:8536–8540 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, G. Y. et al. The stress-activated protein kinases p38 alpha and JNK1 stabilize p21 (Cip1) by phosphorylation. J Biol Chem 277:29792–29802 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Zhan, Q. et al. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18:2892–2900 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Hermeking, H. et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1:3–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Lan, C. W. et al. Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling. Sci Rep 13;5:14994 (2015).

    Article  Google Scholar 

  23. Diamanti-Kandarakis, E. & Dunaif. A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33:981–1030 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, X., Simpson, E. R. & Brown, K. A. p53: Protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res 75:5001–5007 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, D., Zhou, C. & Chen, S. J. Gene regulation studies of aromatase expression in breast cancer and adipose stromal cells. J Steroid Biochem Mol Biol 61:273–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Tilly, K. I., Banerjee, S., Banerjee, P. P. & Tilly, J. L. Expression of the p53 and Wilms’ tumor suppressor genes in the rat ovary: gonadotropin repression in vivo and immunohistochemical localization of nuclear p53 protein to apoptotic granulosa cells of atretic follicles. Endocrinol 136:1394–1402 (1995).

    CAS  Google Scholar 

  27. Wang, X. X. et al. Genome-wide DNA methylation and gene expression patterns provide insight into polycystic ovary syndrome development. Oncotarget 30:6603–6610 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Hee Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kil, K.H., Kim, M.R., Kim, J.H. et al. Analysis of ovarian gene expression in F2 mouse following perinatal exposure to DEHP via the parenteral route. Mol. Cell. Toxicol. 12, 421–427 (2016). https://doi.org/10.1007/s13273-016-0046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-016-0046-6

Keywords

Navigation