Skip to main content
Log in

Identification of aberrant DNA methylation involved in chemoradiation-resistant HCT116 cells via methylation-specific microarray

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Preoperative 5-fluorouracil (5-FU) based chemoradiation is regarded as the standard treatment for locally advanced colorectal cancer (CRC). However, advances in using 5-FU in chemoradiotherapy treatment of CRC are limited by the resistant to the chemoradiotherapy. It has been demonstrated that aberrant methylation contributes to radioresistance in a human colorectal tumor cell line. So we analyzed the differential DNA methylation patterns by methylationspecific microarray in a 5-FU-based concurrent chemoradiotherapy resistance cell model which was established by using human CRC cell line HCT116. As a result, we detected a total of 3719 hypomethylated sites and 27940 hypermethylated sites in CRR cells compared to the control. Furthermore, we analyzed top 10 GO terms involved in significantly differential DNA methylation patterns resulted from the 5-FU-based CRR through GO analyses. To further explore the molecular basis of 5-FU-based CRR in CRC cells, CYP1B1 and CYP2C9 genes expression level were shown down regulated by qRT-PCR. These findings might provide a novel insight for chemoradiation resistance in CRC and provide a potential therapy method in CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y.-S., Xu, S.-X., Ding, Y.-B., Huang, X.-E. & Deng, B. Helicobacter pylori Infection and the risk of colorectal adenoma and adenocarcinoma: an updated meta-analysis of different testing methods. APJCP 14: 7613–7619 (2012).

    Google Scholar 

  2. Chen, Y.-S. et al. Colorectal cancer screening in highrisk populations: a survey of cognition among medical professionals in Jiangsu, China. APJCP 14:6487–6491 (2013).

    Google Scholar 

  3. Goyle, S. & Maraveyas, A. Chemotherapy for colorectal cancer. Digest Surg 22:401–414 (2005).

    Article  CAS  Google Scholar 

  4. Mamon, H. J. & Tepper, J. E. Combination chemoradiation therapy: the whole is more than the sum of the parts. J Clin Oncol 32:367–369 (2014).

    Article  PubMed  Google Scholar 

  5. Wan, J., Gai, Y., Li, G., Tao, Z. & Zhang, Z. Incidence of chemotherapy-and chemoradiotherapy-induced amenorrhea in premenopausal women with stage II/III colorectal cancer. Clin Colorectal Cancer 14:31–34 (2015).

    Article  PubMed  Google Scholar 

  6. Appelt, A. L. et al. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol 16:919–927 (2015).

    Article  PubMed  Google Scholar 

  7. Lee, J. H. et al. The influence of the treatment response on the impact of resection margin status after preoperative chemoradiotherapy in locally advanced rectal cancer. BMC Cancer 13:576 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sobrero, A. F., Aschele, C. & Bertino, J. R. Fluorouracil in colorectal cancer—a tale of two drugs: implications for biochemical modulation. J Clin Oncol 15:368–381 (1997).

    CAS  PubMed  Google Scholar 

  9. Gong, J.-P. et al. Outcomes based on risk assessment of anastomotic leakage after rectal cancer surgery. APJCP 15:707–712 (2013).

    Google Scholar 

  10. Kye, B.-H. & Cho, H.-M. Overview of Radiation Therapy for Treating Rectal Cancer. Ann Coloproctol 30: 165–174 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gantt, G. A. et al. Gene expression profile is associated with chemoradiation resistance in rectal cancer. Colorectal Dis 16:57–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, Y., Joo, K. M., Jin, J. & Nam, D. H. Cancer stem cells and their mechanism of chemo-radiation resistance. Int J Stem Cells 2:109–114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan, M. F., Liang, G. & Jones, P. A. Relationship between transcription and DNA methylation. Curr Top Microbiol 249:75–86 (2000).

    CAS  Google Scholar 

  14. Guz, J., Foksinski, M. & Olinski, R. Mechanism of DNA methylation and demethylation—its role in control of genes expression. Postepy Biochem 56:7–15 (2010).

    CAS  PubMed  Google Scholar 

  15. Hendrich, B. & Bird, A. Mammalian methyltransferases and methyl-CpG-binding domains: proteins involved in DNA methylation. Curr Top Microbiol 249: 55–74 (2000).

    CAS  Google Scholar 

  16. Hsieh, C. L. Dynamics of DNA methylation pattern. Curr Opin Genet Dev 10:224–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Song, C. X. & He, C. Balance of DNA methylation and demethylation in cancer development. Genome Biol 13:173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kulis, M. & Esteller, M. DNA methylation and cancer. Advances in Genetics 70:27–56 (2010).

    PubMed  Google Scholar 

  19. Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98:288–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, W.-J., Vo, Q. N., Shrivastav, M., Lataxes, T. A. & Brown, K. D. Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene 21:3864–3871 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, E. H., Park, A. K., Dong, S. M., Ahn, J. H. & Park, W. Y. Global analysis of CpG methylation reveals epigenetic control of the radiosensitivity in lung cancer cell lines. Oncogene 29:4725–4731 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Bae, J. H. et al. Identification of radiation-induced aberrant hypomethylation in colon cancer. BMC Genomics 16:56 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dou, X. et al. Circulating lymphocytes as predictors of sensitivity to preoperative chemoradiotherapy in rectal cancer cases. APJCP 14:3881–3885 (2013).

    PubMed  Google Scholar 

  24. Chen, Y., Jungsuwadee, P., Vore, M., Butterfield, D. A. & St Clair, D. K. Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv 7:147 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Ma, X. et al. Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer. Cancer Chemoth Phar 69:485–494 (2012).

    Article  CAS  Google Scholar 

  26. Wang, X.-J. et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–1243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nelson, D. R. et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenet Genom 6:1–42 (1996).

    Article  CAS  Google Scholar 

  28. Park, B. K., Pirmohamed, M. & Kitteringham, N. R. The role of cytochrome P450 enzymes in hepatic and extrahepatic human drug toxicity. Pharmacol Therapeut 68:385–424 (1995).

    Article  CAS  Google Scholar 

  29. Oliw, E. H. Oxygenation of polyunsaturated fatty acids by cytochrome P450 monooxygenates. Prog Lipid Res 33:329–354 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Nebert, D. W. & Dalton, T. P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Shimada, T. & Fujii-Kuriyama, Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and1B1. Cancer Sci 95:1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Chambers, D., Wilson, L., Maden, M. & Lumsden, A. RALDH-independent generation of retinoic acid during vertebrate embryogenesis by CYP1B1. Development 134:1369–1383 (2007).

  33. Choudhary, D., Jansson, I., Stoilov, I., Sarfarazi, M. & Schenkman, J. B. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos 32:840–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Murray, G. I., Melvin, W. T., Greenlee, W. F. & Burke, M. D. Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Ann Rev Pharmacol 41:297–316 (2001).

    Article  CAS  Google Scholar 

  35. Nakajima, T. et al. CAR CINOGENE SIS: Expression of cytochrome P450s and glutathione S-transferases in human esophagus with squamous-cell carcinomas. Carcinogenesis 17:1477–1481 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ronghe, A. M., Chatterjee, A., Padhye, S. & Bhat, H. K. Differential regulation of estrogen metabolizing CYP1A1 and CYP1B1 enzymes by novel resveratrol analogs in breast cancer cells. Cancer Res 75:Abstract nr 4648 (2015).

    Article  Google Scholar 

  37. Androutsopoulos, V. P. et al. Expression profile of CYP1A1 and CYP1B1 enzymes in colon and bladder tumors. PLoS One 8:e82487 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Habano, W. et al. CYP1B1, but not CYP1A1, is downregulated by promoter methylation in colorectal cancers. Int J Oncol 34:1085 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Patel, S. et al. Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Brit J Cancer 111:2287–2296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Morvan, V. et al. Role of CYP1B1 gene polymorphisms in anticancer drug cytotoxicity as studied on isogenic cell lines. Cancer Res 72:Abstract nr 1871 (2012).

    Article  Google Scholar 

  41. Cui, J. et al. Design and Synthesis of New a-Naphthoflavones as Cytochrome P450 (CYP) 1B1 Inhibitors to Overcome Docetaxel-resistance Associated with CYP1B1 Overexpression. J Med Chem 58:3534–3547 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Narjoz, C. et al. Important Role of CYP2J2 in Protein Kinase Inhibitor Degradation: A Possible Role in Intratumor Drug Disposition and Resistance. PLoS One 9:e95532 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Potter, G. et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Brit J Cancer 86:774–778 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gonzalez, F. J. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res-fund Mol M 569:101–110 (2005).

    Article  CAS  Google Scholar 

  45. Chen, Z.-H. et al. Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis 25: 2005–2013 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Boruban, M., Yasar, U., Babaoglu, M., Sencan, O. & Bozkurt, A. Tamoxifen inhibits cytochrome P450 2C9 activity in breast cancer patients. J Chemotherapy 18:421–424 (2006).

    Article  CAS  Google Scholar 

  47. Martínez, C. et al. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis 22:1323–1326 (2001).

    Article  PubMed  Google Scholar 

  48. Schmelzle, M. et al. Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostag Oth Lipid M 94:25–33 (2011).

    Article  CAS  Google Scholar 

  49. Xiong, W. et al. Microarray Analysis of Long Non-coding RNA Expression Profile Associated with 5-Fluorouracil-Based Chemoradiation Resistance in Colorectal Cancer Cells. APJCP 16:3395–3402 (2015).

    PubMed  Google Scholar 

  50. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300 (1995).

    Google Scholar 

  51. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Dong.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

13273_2016_39_MOESM1_ESM.pdf

Identification of aberrant DNA methylation involved in chemoradiation-resistant HCT116 cells via methylation-specific microarray

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Li, YF., Liu, S. et al. Identification of aberrant DNA methylation involved in chemoradiation-resistant HCT116 cells via methylation-specific microarray. Mol. Cell. Toxicol. 12, 345–357 (2016). https://doi.org/10.1007/s13273-016-0039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-016-0039-5

Keywords

Navigation