Skip to main content
Log in

Identification of potential biomarkers for xylene exposure by microarray analyses of gene expression and methylation

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Xylene is volatile organic compound that has been reported to increase the incidence of cancer and various diseases related to the immune system, cardiovascular systems, respiratory and reproductive organs. However, there are currently few biomarkers in human cases. Using microarray, we analysed 10 participants for the xylene-exposure group and 10 controls that were not exposed to xylene. The two groups were compared in terms of expression levels and methylation patterns. We identified 6 genes that were down-regulated and hyper-methylated, and 132 that were up-regulated and hypo-methylated in the xylene- exposure group compared to control. We sorted out and 28 biomarker candidates were chosen using DAVID. And then, we used IPA to select the significant potential biomarkers in them. We used network analysis and selected 6 significant genes, and these 6 genes showed altered expression and methylation in xylene-exposure group, suggesting that they are suitable potential biomarkers for xylene exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mølhave, L. et al. The Right to Healthy Indoor Air. Report on a WHO Meeting. European HEALTH21 targets 10, 13 (Bilthoven, The Netherlands, May 2000).

    Google Scholar 

  2. U.S Department of Health and Human Services, Public Health Service. Toxicological Profile for Xylene. Agency for Toxic Substance and Disease Registry. Toxicological Profile for Chromium (1993).

    Google Scholar 

  3. Sedivec, V. & Flek, J. Exposure test for xylenes. Int Arch Occup Environ Health 37:219–232 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Reena, K., Sumanth, P. & Raghavendra, C. Xylene An overview of its health hazards and preventive measures. J Oral Maxillofac Pathol 14:1–5 (2010).

    Article  Google Scholar 

  5. LYON, F. Internationa Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 71:1190–1208 (IARC Press, 2000).

    Google Scholar 

  6. Savolainen, H., Vainio, H., Helojoki, M. & Elovaara, E. Biochemical and toxicological effects of short-term, intermittent xylene inhalation exposure and combined ethanol intake. Arch Toxicol 4:195–205 (1978).

    Article  Google Scholar 

  7. Toftgård, R., Halpert, J. & Gustafsson, J. Xylene induces a cytochrome P-450 isozyme in rat liver similar to the major isozyme induced by phenobarbital. Mol Pharmacol 23:265–271 (1983).

    PubMed  Google Scholar 

  8. Elovaara, E. et al. Metabolism of antipyrine and m-xylene in rats after prolonged pretreatment with xylene alone or xylene with ethanol, phenobarbital or 3-methylcholanthrene. Xenobiotica 19:945–960 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Raunio, H. et al. Cytochrome P450 isozyme induction by methyl ethyl ketone and m-xylene in rat liver. Toxi col Appl Pharm 103:175–179 (1990).

    Article  CAS  Google Scholar 

  10. Gut, I. et al. Exposure to various benzene derivatives differently induces cytochromes P450 2B1 and P450 2E1 in rat liver. Arch Toxicol 67:237–243 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Croute, F. Volatile organic compounds cytotoxicity and expression of HSP72, Hsp90 and GRP78 stress proteins in cultured human cells. Mol Cell Res 1591:147–155 (2002).

    CAS  Google Scholar 

  12. Wheatley, R. E. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kavlock, R. & Dix, D. Computational toxicology as implemented by the US EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. J Toxicol Env Health, Part B 13:197–217 (2010).

    Article  CAS  Google Scholar 

  14. Heller, M. J. DNA MICROARRA Y TECHNOLOG Y: Devices, Systems, and Applications. Annu Rev Biomed Eng 4.1:129–153 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hong, J. Y. et al. Identification of time-dependent biomarkers and effects of exposure to volatile organic compounds using high-throughput analysis. Environ Toxicol (2015) (in press).

    Google Scholar 

  16. Yang, X., Han, H. De Carvalho, D.D. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 4:577–590 (2014).

    Article  Google Scholar 

  17. Bell, A. C. & Felsenfeld, G. Methylation of a CTCFdependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Hanada, M. et al. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82:1820–1828 (1993).

    CAS  PubMed  Google Scholar 

  19. Graff, J. R. et al. E-Cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5195 (1995).

    CAS  PubMed  Google Scholar 

  20. KIM, G. W. et al. Integrative analyses of differential gene expression and DNA methylation of ethylbenzene-exposed workers. BioChip J 9:259–267.

  21. Freedman, R. et al. Linkage disequilibrium for schizophrenia at the chromosome 15q13–14 locus of the α7-nicotinic acetylcholine receptor subunit gene (CHRNA7). Am J Med Genet 105:20–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Gault, J. et al. Genomic organization and partial duplication of the human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52:173–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Chini, B. et al. Molecular cloning and chromosomal localization of the human α7-nicotinic receptor subunit gene (CHRNA7). Genomics 19:379–381 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294:2563–2566 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Narla, G. et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65:1213–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C. et al. Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. The American J Pathol 162:1349–1354 (2003).

    Article  CAS  Google Scholar 

  27. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Gstaiger, M. et al. Skp2 is oncogenic and overexpressed in human cancers. P Natl A Sci 98:5043–5048 (2001).

    Article  CAS  Google Scholar 

  29. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat Rev Cancer 8:438–449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leclerc, E. et al. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 282:31317–31331 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Rothermundt, M., Peters, M., Prehn, J. H. & Arolt, V. S100B in brain damage and neurodegeneration. Microsc Res Tech 60:614–632 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Van Eldik, L. J. & Wainwright, M. S. Th Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neuros 21:97–108 (2002).

    Google Scholar 

  33. Takahashi, T. et al. Mutations of the NOG gene in individuals with proximal symphalangism and multiple synostosis syndrome. Clin Genet 60:447–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Dixon, M. E., Armstrong, P., Stevens, D. B. & Bamshad, M. Identical mutations in NOG can cause either tarsal/carpal coalition syndrome or proximal symphalangism. Genet Med 3:349–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Thacker, J. The RAD51 gene family, genetic instability and cancer. Cancer Lett 219:125–135 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharyya, A. et al. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275:23899–23903 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Yong Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Hong, J.Y., Yu, SY. et al. Identification of potential biomarkers for xylene exposure by microarray analyses of gene expression and methylation. Mol. Cell. Toxicol. 12, 15–20 (2016). https://doi.org/10.1007/s13273-016-0003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-016-0003-4

Keywords

Navigation