Skip to main content
Log in

Benzo(a)pyrene represses melanogenesis in B16F10 mouse melanoma cells

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Benzo(a)pyrene (BaP) is a chemically based polycyclic aromatic hydrocarbon (PAH) that is readily absorbed by the skin. BaP is metabolized to BaP-diol-epoxide by cytochromes P-450 1A1/2 (CYP1A1/2) and cytochromes P-450 1B1 (CYP1B1) in the cytosol. BaP and its metabolites induce genotoxicity and cancer. Although BaP easily accumulates in melanin-containing tissues as well as other tissue types, the effects of BaP on melanocytes are not fully understood. Here, we show that 40-100 µM BaP represses melanin synthesis in B16F10 cells. The decrease of melanin contents is induced by tyrosinase activity in BaP-exposed B16F10. However, this repression of melanin synthesis is not induced by direct inhibition of tyrosinase in in vitro assay. Therefore, we show whether BaP regulated melanin synthesis-related enzyme. BaP regulates melanin synthesis by Tyr and Tyrpl expression. In addition, these genes expression is down-regulated by Mitf repressed by BaP. Importantly, the repression was provoked in the absence and presence of α-melanocyte stimulating hormone (α-MSH). Therefore, we hypothesize BaP interrupts the UV protection mechanism by repressing melanin synthesis in the skin. Taken together our results have revealed new side effects that exposure of BaP abolished melanin synthesis in melanocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodek, P. et al. The relationship between DNA adduct formation by benzo[a]pyrene and expression of its activation enzyme cytochrome P450 1A1 in rat. Environ Toxicol Pharmacol 36:989–996 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Baird, W. M., Hooven, L. A. & Mahadevan, B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hamouchene, H., Arlt, V. M., Giddings, I. & Phillips, D. H. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Genomics 12:333 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Phillips, D. H. & Venitt, S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer 131:2733–2753 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Nebert, D. W., Dalton, T. P, Okey, A. B. & Gonzalez, F. J. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, S. K., McCourt, D. W., Roller, P. P. & Gelboin, H. V. Enzymatic conversion of benzo(a)pyrene leading predominantly to the diol-epoxide r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene through a single enantiomer of r-7, t-8-dihydroxy-7,8-dihydrobenzo(a)pyrene. Proc Natl Acad Sci USA 73:2594–2598 (1976).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kakefuda, T. & Yamamoto, H. Modification of DNA by the benzo[a]pyrene metabolite diol-epoxide r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Proc Natl Acad Sci USA 75:415–419 (1978).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Straub, K. M., Meehan, T., Burlingame, A. L. & Calvin, M. Identification of the major adducts formed by reaction of benzo(a)pyrene diol epoxide with DNA in vitro. Proc Natl Acad Sci USA 74:5285–5289 (1977).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chakravarti, D. et al. Detection of dibenzo[a,l]pyreneinduced H-ras codon 61 mutant genes in preneoplastic SENCAR mouse skin using a new PCR-RFLP method. Oncogene 16:3203–3210 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bolotina, N. A., Gasparian, A. V., Dubovaja, T. K., Evteev, V. A. & Kobliakov, V. A. Benzo[a]pyrene-dependent activation of transcription factors NF-kappaB and AP-1 related to tumor promotion in hepatoma cell cultures. Biochemistry (Mosc) 72:552–557 (2007).

    Article  CAS  Google Scholar 

  11. Santodonato, J., Howard, P. & Basu, D. Health and ecological assessment of polynuclear aromatic hydrocarbons. J Environ Pathol Toxicol 5:1 (1981).

    CAS  PubMed  Google Scholar 

  12. Brenner, M. & Hearing, V. J. The protective role of melanin against UV damage in human skin. Photochem Photobiol 84:539–549 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Park, H. Y., Kosmadaki, M., Yaar, M. & Gilchrest, B. A. Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 66:1493–1506 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Videira, I. F., Moura, D. F. & Magina, S. Mechanisms regulating melanogenesis. An Bras Dermatol 88:76–83 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Brenner, M. & Hearing, V. J. The protective role of melanin against UV damage in human skin. Photochem Photobiol 84:539–549 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Roberto, A., Larsson, B. S. & Tjälve, H. Uptake of 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene in melanin-containing tissues. Pharmacol Toxicol 79:9299 (1996).

    Article  Google Scholar 

  17. Lindquist, N. G. Accumulation of drugs on melanin. Acta Radiologica. Diagnosis (Stockholm) 325:1–92 (1973).

    CAS  Google Scholar 

  18. Kwon, K. J. et al. Asiaticoside, a component of Centella asiatica, inhibits melanogenesis in B16F10 mouse melanoma. Mol Med Rep 10:503–507 (2014).

    CAS  PubMed  Google Scholar 

  19. Espin, J. C. & Wichers, H. J. Effect of captopril on mushroom tyrosinase activity in vitro. Biochim Biophys Acta 1544:289–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Catania, A., Gatti, S., Colombo, G. & Lipton, J. M. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 56:1–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Delghandi, M. P., Johannessen, M. & Moens, U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 17:1343–1351 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Bao, H., Vepakomma, M. & Sarkar, M. A. Benzo(a) pyrene exposure induces CYP1A1 activity and expression in human endometrial cells. J Steroid Biochem Mol Biol 81:37–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Chung, J. Y. et al. Abundance of aryl hydrocarbon receptor potentiates benzo[a]pyrene-induced apoptosis in Hepa1c1c7 cells via CYP1A1 activation. Toxicology 235:62–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Luecke, S. et al. The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis. Pigment Cell Melanoma Res 23:828–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Hoogduijn, M. J. et al. Melanin protects melanocytes and keratinocytes against H2O2-induced DNA strand breaks through its ability to bind Ca2+. Exp Cell Res 294:60–67 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungkwan An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, D.H., Cha, H.J., Kim, K. et al. Benzo(a)pyrene represses melanogenesis in B16F10 mouse melanoma cells. Mol. Cell. Toxicol. 11, 349–355 (2015). https://doi.org/10.1007/s13273-015-0035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0035-1

Keywords

Navigation