Abstract
Deinococcus swuensis DY59T is a Grampositive, coccus-shaped bacterium. Most members of the genus Deinococcus are able to grow in the presence of high levels of chronic radiation toxicity and desiccation because they can protect enzymes from reactive oxygen species generated during ionizing radiation. The mechanisms behind the resistance to radiation toxicity and the genomic features of resistance could be useful to exploit Deinococcus swuensis in the biotechnological applications such as detoxification of xenobiotic contaminated with radioactive wastes. Strain DY59T showed resistance to gamma radiation with a D10 value (i.e. the dose required to reduce the bacterial population by 10-fold) in excess of 5 kGy. However, the genus Deinococcus is slightly characterized at the genome level, despite its potential importance. Thus, the present study determined the features of Deinococcus swuensis DY59T, as well as its genome sequence and annotation. The genome comprised of 3,531,443 bp with a G + C content of 67.4%, which included 3,305 protein-coding genes and 58 RNA genes. Based on the genome annotation, the strain DY59T undergoes prokaryotic type nucleotide excision repair pathway, restores the damaged gene, and resists the ionizing radiation toxicity.
This is a preview of subscription content, access via your institution.
References
Brooks, B. W. Murray, R. G. E. Nomenclature for “Micrococcus radiodurans” and other Radiation-Resistant Cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., Including Five Species. Int J Syst Bacteriol 31:353–360 (1981).
Euzeby, J. P. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 (1997).
Asker, D., Awad, T. S., Beppu, T. & Ueda, K. Deinococcus misasensis and Deinococcus roseus, novel members of the genus Deinococcus, isolated from a radioactive site in Japan. Syst Appl Microbiol 31:43–49 (2008).
Suresh, K., Reddy, G. S., Sengupta, S. & Shivaji, S. Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461 (2004).
Ferreira, A. C. et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947 (1997).
Hirsch, P. et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and drought-tolerating, UVresistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645 (2004).
de Groot, A. et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446 (2005).
Callegan, R. P. et al. Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258 (2008).
Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:24 (2012).
Kang, M.-S., Yu, S.-L., Kim, H.-Y., Lim, H.-S. & Lee, S.-K. SPT4 increases UV-induced mutagenesis in yeast through impaired nucleotide excision repair. Mol Cell Toxicol 9:37–43 (2013).
Ignacio, R. M. et al. The balneotherapy effect of hydrogen reduced water on UVB-mediated skin injury in hairless mice. Mol Cell Toxicol 9:15–21 (2013).
Krisko, A. & Radman, M. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5:a012765 (2013).
Lee, J. J. et al. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil. J Microbiol 51:305–311 (2013).
Tatusov, R. L. et al. The Cog database: an updated version includes eukaryotes. BMC Bioinformatics 4:41 (2003).
Earl, A. M., Mohundro, M. M., Mian, I. S. & Battista, J. R. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184:6216–6224 (2002).
Cai, Y., Geacintov, N. E. & Broyde, S. Ribonucleotides as nucleotide excision repair substrates. DNA Repair (Amst) 13:55–60 (2014).
Rupp, W. D. Early days of DNA repair: discovery of nucleotide excision repair and homology-dependent recombinational repair. Yale J Biol Med 86:499–505 (2013).
Earl, A. M., Rankin, S. K., Kim, K. P., Lamendola, O. N. & Battista, J. R. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UVdamage endonuclease. J Bacteriol 184:1003–1009 (2002).
Daly, M. J. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245 (2009).
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 (1997).
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 (1997).
Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 (2011).
Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547 (2008).
Markowitz, V. M. et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278 (2009).
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 (1997).
Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108 (2007).
Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Inferna. 1.0: inference of RNA alignments. Bioinformatics 25:13351337 (2009).
Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368376 (1981).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kim, M.K., Srinivasan, S., Back, CG. et al. Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity. Mol. Cell. Toxicol. 11, 315–321 (2015). https://doi.org/10.1007/s13273-015-0031-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13273-015-0031-5