Skip to main content

Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity

Abstract

Deinococcus swuensis DY59T is a Grampositive, coccus-shaped bacterium. Most members of the genus Deinococcus are able to grow in the presence of high levels of chronic radiation toxicity and desiccation because they can protect enzymes from reactive oxygen species generated during ionizing radiation. The mechanisms behind the resistance to radiation toxicity and the genomic features of resistance could be useful to exploit Deinococcus swuensis in the biotechnological applications such as detoxification of xenobiotic contaminated with radioactive wastes. Strain DY59T showed resistance to gamma radiation with a D10 value (i.e. the dose required to reduce the bacterial population by 10-fold) in excess of 5 kGy. However, the genus Deinococcus is slightly characterized at the genome level, despite its potential importance. Thus, the present study determined the features of Deinococcus swuensis DY59T, as well as its genome sequence and annotation. The genome comprised of 3,531,443 bp with a G + C content of 67.4%, which included 3,305 protein-coding genes and 58 RNA genes. Based on the genome annotation, the strain DY59T undergoes prokaryotic type nucleotide excision repair pathway, restores the damaged gene, and resists the ionizing radiation toxicity.

This is a preview of subscription content, access via your institution.

References

  1. Brooks, B. W. Murray, R. G. E. Nomenclature for “Micrococcus radiodurans” and other Radiation-Resistant Cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., Including Five Species. Int J Syst Bacteriol 31:353–360 (1981).

    Article  Google Scholar 

  2. Euzeby, J. P. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Asker, D., Awad, T. S., Beppu, T. & Ueda, K. Deinococcus misasensis and Deinococcus roseus, novel members of the genus Deinococcus, isolated from a radioactive site in Japan. Syst Appl Microbiol 31:43–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Suresh, K., Reddy, G. S., Sengupta, S. & Shivaji, S. Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Ferreira, A. C. et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Hirsch, P. et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and drought-tolerating, UVresistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. de Groot, A. et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446 (2005).

    Article  PubMed  Google Scholar 

  8. Callegan, R. P. et al. Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:24 (2012).

    Article  Google Scholar 

  10. Kang, M.-S., Yu, S.-L., Kim, H.-Y., Lim, H.-S. & Lee, S.-K. SPT4 increases UV-induced mutagenesis in yeast through impaired nucleotide excision repair. Mol Cell Toxicol 9:37–43 (2013).

    Article  CAS  Google Scholar 

  11. Ignacio, R. M. et al. The balneotherapy effect of hydrogen reduced water on UVB-mediated skin injury in hairless mice. Mol Cell Toxicol 9:15–21 (2013).

    Article  CAS  Google Scholar 

  12. Krisko, A. & Radman, M. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5:a012765 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Lee, J. J. et al. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil. J Microbiol 51:305–311 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Tatusov, R. L. et al. The Cog database: an updated version includes eukaryotes. BMC Bioinformatics 4:41 (2003).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Earl, A. M., Mohundro, M. M., Mian, I. S. & Battista, J. R. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184:6216–6224 (2002).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cai, Y., Geacintov, N. E. & Broyde, S. Ribonucleotides as nucleotide excision repair substrates. DNA Repair (Amst) 13:55–60 (2014).

    Article  CAS  Google Scholar 

  17. Rupp, W. D. Early days of DNA repair: discovery of nucleotide excision repair and homology-dependent recombinational repair. Yale J Biol Med 86:499–505 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Earl, A. M., Rankin, S. K., Kim, K. P., Lamendola, O. N. & Battista, J. R. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UVdamage endonuclease. J Bacteriol 184:1003–1009 (2002).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Daly, M. J. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 (1997).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 (1997).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tamura, K. et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Markowitz, V. M. et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 (1997).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Inferna. 1.0: inference of RNA alignments. Bioinformatics 25:13351337 (2009).

    Article  Google Scholar 

  28. Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17:368376 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Young Jung.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.K., Srinivasan, S., Back, CG. et al. Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity. Mol. Cell. Toxicol. 11, 315–321 (2015). https://doi.org/10.1007/s13273-015-0031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0031-5

Keywords