Skip to main content
Log in

Metabolic gene expression profiling of Zebrafish embryos exposed to silver nanocolloids and nanotubes

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Nanosilver is produced in various shapes, size and coatings to increase its nanomaterial effects. However, the nanotoxicity related with the physiochemical properties of nanomaterials. When nanomaterials attach, reacted or be though the cell membrane, the first barriers they face are cell proteins (e.g., receptors, enzymes, and carriers). Nanomaterials could affect metabolic mechanisms through their reaction with cell proteins. Therefore, this study analyzed changes in metabolic processes to identify corresponding changes in molecular functions and biological processes. We compared the gene expression profiling results of zebrafish embryos exposed to silver nanocolloids (Ag NCs, 10 μg/L) and silver nanotubes (Ag NTs, 1 μg/L); the results revealed that 198 genes were upregulated and 99 downregulated by Ag NCs and Ag NTs. The major genes of molecular function were associated with binding and catalytic activity, and the related genes of biological processes were involved in nucleobase-containing compound and protein metabolic processes. This study suggests that the two types of nanosilver caused similar patterns of metabolic process change regardless of nanosilver shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, Y. S., Lee, M. Y., David, A. E. & Park, Y. S. Nanoparticles for gene delivery: therapeutic and toxic effects. Mol Cell Toxicol 10:1–8 (2014).

    Article  CAS  Google Scholar 

  2. Zhang, L. & Webster, T. J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 4:66–80 (2009).

    Article  CAS  Google Scholar 

  3. Jones, C. F. & Grainger, D. W. In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sauer, U. G. et al. Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation. Toxicol Appl Pharmacol 276:1–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. United States Environmental Protection Agency (US EPA), Human Exposure and Atmospheric Sciences; Nanosilver, www.epa.gov/heasd/research/nanosilver.html.

  6. Wijnhoven, S. W. P. et al. Nano-silver — a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138 (2009).

    Article  CAS  Google Scholar 

  7. Lapresta-Fernández, A., Fernández, A. & Blasco, J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trac-Trends Anal Chem 32:40–59 (2012).

    Article  Google Scholar 

  8. Aillon, K. L. et al. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mahmoudi, M. et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol Adv 32:679–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Walkey, C. D. & Chan, W. C. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh, M. et al. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat Res 749:60–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Dobrzyńska, M. M. et al. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology 315:86–91 (2014).

    Article  PubMed  Google Scholar 

  13. McShan, D., Ray, P. C. & Yu, H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lee, Y. H. et al. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35:4706–4715 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Stępkowski, T. M., Brzóska, K. & Kruszewski, M. Silver nanoparticles induced changes in the expression of NF-κB related genes are cell type specific and related to the basal activity of NF-κB. Toxicol In Vitro 28:473–478 (2014).

    Article  PubMed  Google Scholar 

  16. Lim, D. H. et al. The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials 33:4690–4699 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, L. et al. Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J Nanobiotechnology 10:16, 1–11 (2012).

    Article  Google Scholar 

  18. Park, H. G. & Yeo, M. K. Comparison of gene expression changes induced by exposure to Ag, Cu-TiO2, and TiO2 nanoparticles in zebrafish embryos. Mol Cell Toxicol 9:129–139 (2013).

    Article  CAS  Google Scholar 

  19. Sadeghi, B. et al. Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates. Adv Powder Technol 23:22–26 (2012).

    Article  CAS  Google Scholar 

  20. Römer, I. et al. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J Chromatogr A 1218:4226–4233 (2011).

    Article  PubMed  Google Scholar 

  21. Angel, B. M., Batley, G. E., Jarolimek, C. V. & Rogers, N. J. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93:359–365 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. European Molecular Biology Laboratory — European Bioinformatics Institute (EMBL-EBI), www.ebi.ac.uk/QuickGO/GTerm?id=GO:0044238.

  23. Dekens, M. P. & Whitmore, D. Autonomous onset of the circadian clock in the zebrafish embryo. EMBO J 27:2757–2765 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tamai, T. K., Carr, A. J. & Whitmore, D. Zebrafish circadian clocks: cells that see light. Biochem Soc Trans 33:962–966 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Destici, E., Oklejewicz, M., Nijman, R., Tamanini, F. & van der Horst, G. T. Impact of the circadian clock on in vitro genotoxic risk assessment assays. Mutat Res 680:87–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Palmieri, F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 34:465–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Lash, L. H. Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163:54–67 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhao, R. et al. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol 25:2622–2631 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Holtzinger, A. & Evans, T. Gata4 regulates the formation of multiple organs. Development 132:4005–4014 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. ZFIN: The Zebrafish Model Organism Database, http://zfin.org/ZDB-GENE-070424-83.

  31. ZFIN: The Zebrafish Model Organism Database, http://zfin.org/ZDB-GENE-070206-10.

  32. Gao, S. et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell 36:457–468 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lacosta, A. M. et al. Pax7 identifies neural crest, chromatophore lineages and pigment stem cells during zebrafish development. Int J Dev Biol 51:327–331 (2007).

    Article  PubMed  Google Scholar 

  34. Perner, B., Englert, C. & Bollig, F. The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol 309:87–96 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Sperber, S. M. & Dawid, I. B. barx1 is necessary for ectomesenchyme proliferation and osteochondro-progenitor condensation in the zebrafish pharyngeal arches. Dev Biol 321:101–110 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Darras, V. M., Van Herck, S. L. J., Heijlen, M. & Groef, B. D. Thyroid hormone receptors in two model species for vertebrate embryonic development: chicken and zebrafish. J Thyroid Res 2011:1–8 (2011).

    Article  Google Scholar 

  37. Kim, Y. S., Nakanishi, G., Lewandoski, M. & Jetten, A. M. GLIS3, a novel member of the GLIS subfamily of Krüppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res 31:5513–5525 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Li, J. et al. Phosphorylation of MCM3 protein by cyclin E/cyclin-dependent kinase 2 (Cdk2) regulates its function in cell cycle. J Biol Chem 286:39776–39785 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Seck, K. et al. Analysis of the DPYD gene implicated in 5-fluorouracil catabolism in a cohort of Caucasian individuals. Clin Cancer Res 11:5886–5892 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Kessels, M. Y. et al. Proteomics analysis of the zebrafish skeletal extracellular matrix. PLoS one 9:e90568 (2014).

    Article  Google Scholar 

  41. Mracek, P. et al. Regulation of per and cry genes reveals a central role for the D-box enhancer in light-dependent gene expression. PLoS one 7:e51278 (2012).

    Article  Google Scholar 

  42. Baumann, S. et al. An unexpected role for FosB in activation-induced cell death of T cells. Oncogene 22:1333–1339 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Turchinovich, G. et al. Programming of marginal zone B-cell fate by basic Kruppel-like factor (BKLF/KLF3). Blood 117:3780–3792 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Seillet, C. et al. Differential requirement for Nfil3 during NK cell development. J Immunol 192:2667–2676 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Saito, J. et al. Regulation of apoptosis signal-regulating kinase 1 by protein phosphatase 2Cepsilon. Biochem J 405:591–596 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Westerfield, M. THE ZEBRAFISH BOOK, 5th Edition; A guide for the laboratory use of zebrafish (Danio rerio), Eugene, University of Oregon Press. Paperback. (4th Edition available online, http://zfin.org/zf_info/zfbook/zfbk.html) (2007).

    Google Scholar 

  47. Yeo, M. K. & Park, H. G. Gene expression in zebrafish embryos following exposure to Cu-doped TiO2 and pure TiO2 nanometer-sized photocatalysts. Mol Cell Toxicol 8:127–137 (2012).

    Article  CAS  Google Scholar 

  48. Kimmel, C. B. et al. Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyeong Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HG., Yeo, MK. Metabolic gene expression profiling of Zebrafish embryos exposed to silver nanocolloids and nanotubes. Mol. Cell. Toxicol. 10, 401–409 (2014). https://doi.org/10.1007/s13273-014-0045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0045-4

Keywords

Navigation