Skip to main content
Log in

ZnO nanoparticle induces apoptosis by ROS triggered mitochondrial pathway in human keratinocytes

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Zinc Oxide nanoparticles (ZnO NPs) in its small size with large reactive surfaces can lead to toxicological injury by generating reactive oxygen species (ROS) and oxidative stress. Recently, ZnO NPs were shown to play a role in acute or chronic toxicities with mammalian cells, where its mechanism of toxicity is not fully characterized yet. In this study, the potential mechanisms of ZnO NPs in inducing and increasing oxidative stress for causing cellular apoptosis were investigated with human keratinocytes. Indeed, ZnO NPs induced significant intracellular ROS and mitochondrial ROS productions. And it seemed that cellular ROS levels induced by ZnO NPs led to the dissipation of the mitochondrial membrane potentials and elicited the cellular apoptosis. The induced ROS production by ZnO NPs was blocked with chelator treatment, which inhibited the ZnO ion. The present study demonstrates that increased levels of ROS by ZnO NPs cause mitochondrial dysfunction and cellular apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, W. T. Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bae, H. C. & Ryu, H. J. et al. Oxidative stress and apoptosis induced by ZnO nanoparticles in HaCaT cells. Mol Cell Toxicol 7:333–337 (2011).

    Article  CAS  Google Scholar 

  3. Gojova, A. et al. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Yang, H. et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78 (2009).

    Article  PubMed  Google Scholar 

  5. Babior, B. M., Lambeth, J. D. & Nauseef, W. The neutrophil NADPH oxidase. Arch Biochem Biophys 397: 342–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Zamzami, N. et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Gottlieb, E., Armour, S. M., Harris, M. H. & Thompson, C. B. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Li, P. F., Dietz, R. & von Harsdorf, R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 18:6027–6036 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jeong, S. H. et al. ZnO nanoparticles induce TNF-α expression via ROS-ERK-Egr-1 pathway in human keratinocytes. J Dermatol Sci 72:263–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Samberg, M. E., Oldenburg, S. J. & Monteiro-Riviere, N. A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Manke, A., Wang, L. & Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sharma, V., Anderson, D. & Dhawan, A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Shen, C. et al. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci 136:120–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Nohynek, G. J., Dufour, E. K. & Roberts, M. S. Nano-technology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21:136–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Guo, D. et al. Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol In Vitro 27:731–738 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Wook Son.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, WI., Park, YH., Bae, H.C. et al. ZnO nanoparticle induces apoptosis by ROS triggered mitochondrial pathway in human keratinocytes. Mol. Cell. Toxicol. 10, 387–391 (2014). https://doi.org/10.1007/s13273-014-0043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-014-0043-6

Keywords

Navigation